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ABSTRACT: The governing equation of the Rayleigh wave of with two temperatures, initial stress and 
magnetic field and dual phase lag thermo-elasticity are solved. The governing equation are solved by the 
surface wave solution and particular solution satisfies the boundary condition to obtain the secular equation 
of Rayleigh wave for thermally insulated/isothermal on stress free surface in half-space. The secular 
equation is approximated for calculating the numerical value of the velocity, amplitude-attenuation factor of 
Rayleigh wave by using ortran programming for a given material. Hence, effect of magnetic field, initial 
stress, two-temperature, dual-phase-lag on amplitude- attenuation and velocity of propagation are shown 
graphically. 
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I. INTRODUCTION 

Biot [1], was the first who investigate the classical 
phenomena of dynamic coupled thermo-elasticity and 
this theory was further extended to the generalized 
thermo-elasticity by Lord & Shulman [2] and Green & 
Lindsay [3]. In this theory they consider the propagation 
of heat as a wave phenomenon instead of diffusion 
phenomenon and hence it helps to predict the speed 
propagation of heat. J-ignaczak and Starzewski [4] 
,introduced that heat in a medium predicts as a finite 
velocity of propagation. Hetnarski and Ignaczak [5], 
investigated different effects of propagation of wave in 
thermoelastic medium and this effect is used in many 
fields like as mineral and oil exploration. Geophysics, 
engineering. Deresiewicz [6] Singh [7-8], Sinha, Sinha 
[9], Othman , Song [10], in coupled thermoelasticity and 
also in generalized thermoelasticity they consider many 
different problems for plane-wave propagation. Tzou 
[11-13] developed that the dual phase lag model where 
the response of interaction between phonon and 
electron at macroscopic level is considered delayed as 
compare to microscopic level. In this model we use 
modified fourier law which have two different time-
translation. Recently, Rayleigh wave propagation by 
using DPL model in isotropic thermoelastic solid half-
space was investigated by Abouelregal [14]. Further the 
behavior of Rayleigh wave by using DPL model in 
initially stressed solid half space of anisotropic thermo-
elastic surface under the effect of magnetic field by S. 
Kumari [15].  Gurtin and Williams [16,17] proposed the 
2

nd
 law of thermodynamics in which because of heat 

conduction in continuous body phenomena of entropy 
was governed.   Chen et al., [18, 19] was first who 
purposed a theory on two -temperature for heat 
conduction through a material. The main aim of that 
theory was to construct a material in such a way that the 
two different temperatures don’t coincide within it. In this 
theory a parameter that is a

* 
> 0 for material is involve 

such that if a
*
 → 0 then ϕ → T where, ϕ is conductive 

temperature and T is thermodynamic temperature. This 

theory helps to make a two temperature model in which 
the distribution of temperature in electron and phonon 
was predicted under the process of ultra short laser in 
any metals. In certain conditions time dependent 
problem can be equal to two temperature theory was 
investigated by Warren and chen [20] , whereas Φ and 
� in particular wave propagation are different. In two 
temperature theory the motion of harmonic plane waves 
was studied by Puri and Jordan [21]. Theory for two-
temperature generalized thermo-elasticity was 
developled by Youssef [22]. Further, the exact solution 
for two-temperature in dual phase lag model under the 
given two initial boundary conditions was derived 
Quintanilla and Jordan [23].  E. Karamany and Ezzat 
[24] and Ezzat and E.Karamany [25] and Ezzat et al., 
[26] without energy dissipation in two-temperature 
thermoelasticity they proved uniqueness and reciprocity 
theorems. Ezzat et al., [27] developed a theory with 
fractional order DPL heat transfer under two-
temperature magneto-thermo-elasticity.  Finite wave 
speed of thermo-elasticity under fractional order of two-
temperature was proposed by Sur and Kanoria [28]. 
H.M. Youssef (2012) [29] gives a state-space approach 
on generalized themroelasticity of two-temperature 
having no energy dissipation with a medium subject to a 
moving source of heat. M.A. Ezzat and A.S. [30] 
Karamony purposed a model of magneto-
thermoelasticity with two-temperature in which heat 
conduction law of problem of two-temperature theory for 
a thermo-elastic half-space that was subjected to the 
Ramp-theory heating.  
Youssef and Harby (2007)  [31] gave a theory on 
generalized thermoelasticity for two-temperature of an 
infinite solid having a spherical cavity which is subjected 
to different loading temperature in which equation 
obtained from above discussion is used to obtain the 
formulation of model. H.M. Youssef (2008) [32] solved a 
problem of 2-d for generalized thermoelasticity with two-
temperature and half space which is subjected to Ramp-
type heating. Youssef and Bassiouny (2008) [33] using 
above theories solve the problem of 1-d pizoelctric half-

e
t
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space by using its boundary condition in which material 
is objected to three types of heating effect- a) thermal 
shock-type b) Ramp-type c) Harmonic-type. H.M. 
Youssef (2009) [34] purposed a model in which 
cylindrical cavity is subjected to any moving source of 
heat which is solved by two theory of generalized 
thermoelasticty with two-temperature. In this analytical 
solution is obtained by laplace transforms and its 
numerical result, discussion and comparison is taken 
with the L.S. Model of 1-d generalized themoelasticity. 
Ezzat et al., [35] Kumar and Mukhopadhyay [36] 
discussed effects on wave propagation of thermal 
relaxation time in context of two-temperature thermo-
elasticity. The phenomena of plane waves reflected 
back on a two-temperature generalized thermoelastic 
solid half-space free surface was studied by Singh and 
Bala [37]. Kumar et al., [38] investigated parameter on 
plane harmonic wave passes through an elastic medium 
that are 2

nd
 relaxation time and two-temperature. 

In the present work, behaviour  of Rayleigh wave by 
using dual phase lag model in initially stressed solid half 
space of anisotropic thermo-elastic surface under the 
effect of magnetic field and two temperature are studied. 
The frequency equation of Rayleigh wave under the 
given surface with particular cases i.e. Thermally 
insulated space/Isothermal and some special case had 
been derived. In this the combined effect of magnetic 
field and two-temperature are shown graphically. 

II. BASIC EQUATIONS  

Following Tzou [11, 12] and Youssef, et al., [22] the 
basic equations Dual Phase lag  transversely isotropic 
thermo-elasticity.  

 
1. Constitutive Equation 
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2. The Equation of Motion 
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3. The equation of energy 
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4. The modified Fourier law 

t

q
q

t
K i

qi

j

jij
∂

∂
+=

∂

Φ∂
+Φ− ττ θ )(

,

,

 

 
(5) 

 
5. The Relation between entropy, Strain and 

Temperature  
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T

c
S β

ρ
ρ +Φ=
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6. The basic equation of Maxwell’s 

Electromagnetic field 

∇. � = −μ�
	

	�

 ,   ∇. � = 0, 

∇. 
 = �, ∇. � = 0 

(7) 

 7. The equation for Maxwell stress 

σ��� = μ����ℎ� + ��ℎ� − �������� (8) 

 
        8. The Relation between two temperature: 

ii
a Φ=Θ−Φ *

 (
(9) 

             where i, j, k, l are from 1 to 3 
 

Notations 

 

III. FORMULATION OF PROBLEM 

 We consider a transversely isotropic homogeneous 
dual phase lag thermo-elastic half- space solid under 
the effect of magnetic field and  two temperature with (x, 
y, z) in Cartesian coordinate system  at uniform 
temperature previously. Origin of the co-ordinate system 
from the plane surface and the is normal to z-axis           

( 0≥z ) and was assumed at z = 0 at free from stress 

on a thermally insulated and isothermal surface. We 
considered  the plane strain parallel to x-z plane, and u 
= (u1,0,u3)  as displacement vector and  H0= (0,H0,0) as  
constant magnetic field  Using equation (1) –(9) we  
obtained  the following: 
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0T−Φ=Θ   = small temperature increment, 

         T  = absolute temperature,  

0
T   

= 
 uniform reference  temperature s.t 

1
0

<<
Θ

T

  

ij
δ  = kronecker delta 

Φ = the conductive temperature  

a* =  parameter of two temperature 

ρ  =  density of the medium  

iq  = vector of heat conduction  

ijK  =  thermal conductivity tensor 
components  

E
C   =  specific heat at the constant strain 

ijklC   =  tensor of the elastic constant 

ij
σ   =  stress tensor components  

Pij

 
= parameter of Initial stress 

iu   
=  displacement vector  

ije  
=  strain tensor component 

 S  =   entropy per unit mass  

ijβ   
=  constitutive coefficients. 

 
H =  perturbed magnetic field over H0 

J =  electric current density 

 
ue  

 
= magnetic permeability,   

h  =  ∇ × (u × H0) and H , H0 + h. 

q
τ   

=  phase-lag of heat flux  

θτ   
 
=  temperature with 0 qθτ τ≤ ≤  
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Where 

333111333111 ,,, ββββ ==== KKKK  

IV . SURFACE WAVE SOLUTION 

For thermo-elastic surface wave the  propagation in x-
direction and  the displacement and potential function 
are written as: 
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 Using the equation (13) into (10)-(12) and then using 
equation (14), we obtain the following homogenous 
system of the three equation: 

0)](1[

]1[

])([

22*

1144

1

3

114

2

013

1

2

1144

1111

2
2

=+−−
+

−

+
+

+
+

+
+

−−

ϕ
β

φ
µ

φ
ρ

Dka
Pc

ik

D
Pc

Hc
ik

D
Pc

Pcc
k

e  

  

 

(15) 

0)](1[

])1([

)]1([

22*

4444

3

3

2

4444

3333

4444

2
2

1

1144

13

=+−−
+

−

+

+
+−

+
+

+
+

ϕ
β

φ
ρ

φ

Dka
Pc

D
Pc

Pc

Pc

c
k

D
Pc

c
ik

 

 

 
 
 

 

(16) 

0]

})}(1{{[

2*

3

*

1

22*

1144

2
2

3

2

1144

2

3

11

1144

2
3

=+

−+−−
+

+

+
+

+

ϕ

ρ

φε
ρ

β

φβ
ρ

ε

DK

KDka
Pc

c
k

Dk
Pc

c

Pc

c
ik

 

 
 
 
 

 

(17) 

where  

,
)(

)(
,

1
,

*

1144

3*

3

*

1144

1*

1

*

22

0

2

1

τ

τωτ
ω

τ
τ

ρ

β
ε

θ

Pcc

K
K

Pcc

K
K

i

i

cc

T

E

E

q

E

+
=

+
=

−

+
==

 

It is necessary for the non trivial solution of equation 
(15)-(17) is 

0246 =−+− CBDADD                           (18) 

and A,B, and C can be written as  
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 Where iii CBA ,,   and 
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,,
iii

CBA are the  constants 

and mi be the roots of auxiliary equation of (18) which is 
cubic in m

2
, and roots m1

2
 , m2

2
 , and m3

2
are related as  

Ammm =++ 2

3

2

2

2

1  (25) 
 

Bmmmmmm =++ 2

1

2

3

2

3

2

2

2

2

2

1
 (26) 

        
Cmmm =2

3

2

2

2

1  

 

(27) 

 For the surface wave roots are complex in general 

(W.L.O.G) we may assume that . 0)Re( >im  . We 

assume only mi that satisfy the following condition: 
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Using the above radiation condition  the relation (21) –
(24) reduces the following solutions in the half space 
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V. DERIVATION OF THE FREQUENCY EQUATION 

The boundary conditions of  stress free surface of the 
body at z=0: 
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The solution (29)-(31) satisfy the boundary condition 
(32)-(34) and written in homogenous system of equation 
in terms of A1, A2 and A3  
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For non-trivial solution of Eqns. (35)-(37) the 
determinant should be vanish 
Equation (38) is the frequency equation of  the Rayleigh 
wave in dual Phase lag with initially stressed 
transversely isotropic , thermo-elastic half- space with 
two temperature and magnetic field . 
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Particular cases:  

Thermally insulated surface: When 0→h  then the 

frequency Eqn. (38) reduces to 
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Isothermal surface : When put ∞→h then the 

frequency equation (38)      
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Special Cases

 

(i) In absence of two temperature , 0
* =a , 

initial stress 03311 == PP  and magnetic 

field 00 =H then the frequency equation 

(38) can be written as  
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 Where 
*,

ii
FF  calculated according and Eqn. (41) is 

same as the frequency equation given by singh et al., 
(2013) 

(ii) If we put 0=θτ  and the considered only  

qτ  then the DPL thermo-elasticity reduces 

to Lord-Shulman generalized thermo-
elasticity. 

(iii) If we put 0→=
q

ττ θ then the DPL 

thermo-elasticity reduces to coupled 
thermo-elasticity. 

(iv) If we put 0→=
q

ττ θ  and 0=ε  then 

the DPL thermo-elasticity reduces to un 
coupled thermo-elasticity. 

(v) If we put 
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(vi) then the equation (35) reduces to the 
isotropic elasticity. And then if put  

0,0,0 === εβK and after a long 

calculation the frequency equation (38)  
reduces to  
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 Which is the frequency equation of Rayeigh wave. 

VI. NUMERICAL RESULT AND DISCUSSION 

When  ε  is small at normal temperature and 1<<ε  

using in equation (19)-(21), we obtain the following 
approximated roots using the relation (19)-(21) 
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We restricted only the case of thermally insulated 
surface only for the numerical computation of the 
dimensionless speed of Rayleigh wave. Therefore the 
equation (38) is approximated and with the help of 
equation (42)-(44) solved numerically to obtain in the 
speeds of Rayleigh wave for certain range of 
dimensionless constants. We numerically calculated the 
non dimensional propagation of velocity of Rayleigh 
wave for thermally insulated half space and 
approximated frequency equation (39) using (42)-(44)

    

 Following the physical constants of crystal of Zinc 
(Chadwick and Seet [from paper 5] are considered. For 

the given frequency range HzHz 82 ≤≤ ω at 

H=0.2Oe P = 0.5 Pa, 0
* =a , 02.0

* =a  and   

002.0
* =a  by using DPL theory, non-dimensional 

Rayleigh wave velocity was calculated by 
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Fig. 1: Frequency versus non-dimensional velocity of 

Rayleigh wave in DPL theory when at H = 0.2 oe.  

In Fig. 1 we observe that frequency of Rayleigh wave 
depends on the different values of a

*
. in graph we see 

that at a
*
=0 as frequency of Rayleigh wave increases 

than its non-dimensional velocity is also increases 
sharply up to certain point and decreases sharply, 

further with the increase in a
*
 increase in the velocity 

became slow and further at higher value of a
*
 i.e. at 0.02 

velocity starts decreasing with increase in frequency 
and increase after a certain point.  

Fig. 2 indicates the effect of initial stress on non-
dimensional velocity at different value of a

*
. By using 

DPL theory we determine the non-dimensional velocity 
of Rayleigh wave in the different range of initial-stress 

i.e. PaP 6.10 ≤≤  at Hz5=ω  and H=0.2Oe, 

0
* =a , 02.0

* =a  and 002.0
* =a  by using 

formula 

1144

2

Pc

c

+

ρ
. From the graph we observe that 

non-dimensional velocity decreases with increase in 
initial-stress and then slightly increased and with 
increase in the value of a

*
 corresponding curve slightly 

shifts downward. 
 

 

Fig. 2. Dependence of non-dimensional velocity of 
Rayleigh wave on the initial stress in DPL theory at w = 

5 Hz and H=0.2 oe. 

 
Fig. 3: non-dimensional velocity of Rayleigh wave 

versus Frequency for DPL, L-S, C.T. theory at P = 0.5. 
Pa and H = 0.4 O e and two temperature parameter 

a*=0.02 

For DPL theory, L-S Theory, and C.T. Theory we 
determine the non-dimensional velocity of Rayleigh 
wave in the given range of frequency i.e. 
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HzHz 82 ≤≤ ω at P = 0.5 Pa, H=0.2Oe and a
*
 = 

0.002. From Fig.3  we observe that with increase  
frequency of Rayleigh wave its non-dimensional velocity 
increases and then up to certain point it decreases 
sharply a

*
 = 0.002.   

VII. Conclusion 

The general solution of governing equation of 
transversely isotropic dual phase lag with two 
temperature and magnetic field were obtained using the 
surface wave solution. We reduce general solution to 
particular solution by using suitable radiation condition 
in the given half-space. Using this particular solution we 
find the frequency equation for Rayleigh wave by using 
the suitable boundary conditions on the surface which is 
stress free and insulated thermally in half-space. For 
numerical calculation, approximate the frequency 
equation for a particular model of material. The 
dimensionless velocity against the frequency two-
temperature, initial stress was plotted. Effect of two 
temperature, initial stress and dual phase were shown 
graphically. 
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