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ABSTRACT: The present study is concerned with Rayleigh wave propagation in homogenous transversely
isotropic medium. Effect of rotation on Rayleigh waves in thermo-elastic half space in the presence of
magnetic field at two temperature is discussed in context of Three-phase-Lag (TPL) Model . The expression
for displacement components, stresses and temperature distribution are obtained using Normal Mode
Analysis and closed form of frequency equation is derived, particular cases for thermally insulated and
isothermal are discussed. Effect of rotation on attenuation coefficient and Rayleigh wave velocity with
respect to frequency and wave number are presented graphically.
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. INTRODUCTION

It is well known fact that in classical Coupled Theory
(CT) of thermo-elasticity concluded that if thermal
disturbance is applied to material that conducting heat,
then effects of disturbance can be instantaneously felt
infinitely far away from its source and heat governing
equation is in parabolic form emits thermal signals of
infinite speed. To overcome this short coming of
classical theory, in the last few decades, various
theories have been developed. Lord-Shulman [1]
developed a theory that discard the hypothesis
proposed by classical coupled theory and formulated
the generalized theory of thermo-elasticity in which the
coupling between strain and temperature that resulted in
hyperbolic equation. Green-Lindsay [2] developed
another form of generalised theory , that uses entropy
production inequality in constitutive relations. Green-
Naghadi [3-5] formulated three models of generalized
thermo-elasticity of homogenous isotropic material. In
GN-I theory constitutive relations in terms of both linear
and non-linear theories.GN-Il developed the thermo-
elastic theory without energy dissipation and GN-III
developed the theory with energy dissipation. Bromwich
[6] studied the propagation of shocks in the
compressible material which has different elastic
constant from outer body to inner body where gravity
has not been taken into consideration. Kolsky [7]
investigated the mechanical pulses in polymer using
condenser microphone on one side and a small
detonator on other side. The shape of pulses had been
predicted using Fourier analysis on the condition that
frequency range is known. Nowinski [8] studied thermo-
elasticity graphically as well as analytically. Puri and
Cowin [9] analysed the material with voids for the
propagation of harmonic waves and discovered the
dilation waves, carrying volume fraction and these
waves are dissipative and dispersive and attenuated to
each other. Chandrasekharaiah [10] studied the relevant
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literature of existing theories of thermo-elasticities and
derived the governing equations. Hawaa and Neyfeh
[11] investigated anisotropic plate’s layers for harmonic
waves propagation in context of generalized thermo-
elasticity and each layers have degree of symmetry in
terms of thermo-elasticity. Abd-Alla [12] studied the
influence of initial stress and gravity on the orthotropic
medium . Sharma et al., [13] studied the propagation of
thermo-elastic waves in the condition of stress free for
homogenous isotropic plates and derived frequency
equation for isothermal and thermally insulated
surfaces. Choudhri [14] formulated Three-Phase-Lag
(TPL) model for thermo-elasticity in which heat flux
vector, thermal displacement and gradient are the key
components in constitutive relations. Singh et al., [15]
studied the transversely isotropic medium in the
presence of initial stress and magnetic field for the
Rayleigh wave propagation. Shaw and Mukhopadahay
[16] analyzed micro polar isotropic solid for the Rayleigh
wave proliferation in context Three-Phase-Lag model
and obtained frequency equation for both thermally
insulated and isothermal surfaces. Biswas et al., [17]
analyzed homogenous orthotropic thermo-elastic
medium for Rayleigh wave propagation in context of the
Three-Phase-Lag model. Chandrasekhariah  [18]
reviewed the hyperbolic thermo-elasticity that includes
temperature dependent and thermal relaxation
components. Tzou [19] proposed the relationship of
temperature gradient and heat flux vector to show the
important behaviour of diffusion, wave and phonon-
electron interactions.

Buchwald [20] studied the isotropic media for the
Rayleigh wave propagation in which free plane is
parallel or normal to the symmetry of direction of
rotation. Biswas et al, [21] studied the influence of
rotation in the presence of magnetic field for the
propagation of Rayleigh waves in thermo-elastic
isotropic medium and discussed the path of particles in
waves. Schoenberg and Censor [22] studied the
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harmonic waves in elastic medium with rotation in which
centripetal and corolis accelerations included in the
equations of motion of rotating media . Chen and Gurtin
[23] constructed the theory that involved non-simple
material at two different temperature assumed the
condition that entropy, internal energy, heat flux and
thermodynamic temperature depends upon conductive
temperature's present value. Chen et al., [24] developed
the theory of thermo-elasticity involving two temperature
conductive ( @) and thermodynamic (T) .This theory
introduced material constant a* if this parameter tends
to zero then conductive temperature is equal to
thermodynamic temperature and hence transformed into
classical theory. Warren and Chen [25] studied the
wave propagation within the framework of two-
temperature theory .Youseef [26] constructed a theory
of generalized thermo-elasticity by considering the
hypothesis that heat supply in elastic bodies depends
upon conductive and thermodynamic temperature,
which are at different level and derived the equation for
homogenous isotropic body in terms of two temperature,
Youseef [27] formulated a new theory of thermo
elasticity of two temperature without energy dissipation
and by taking into consideration GN-II model a general
unigueness  theorem has been developed without
energy dissipation. Lotfy and Wafaa [28] studied the
effect of rotation on the homogenous isotropic half
space in context of two temperature theory. Singh [29]
analysed the homogenous isotropic Thermo elastic
medium at two temperature in the context of Lord-
Shulman Theory. Maganaet.al [30] investigated the
stability of Taylor series approximation for phase Lag at
two temperature. Ezzat et al, [31] formulated the new
model of thermo elasticity involving two temperature
with time delay and Kernel Function and proved the
Taylor Theorem for memory dependent derivatives.
Makhopadhyay and Prasad [32] analysed the harmonic
wave propagation in rotating homogenous isotropic
elastic medium with angular velocity in terms of two
temperature thermo-elasticity. Kumar and
Mukhopadhyay [33] analysed the medium with cavity at
two temperature Green Lindsay theory under the
influence  of temperature  dependent  thermal
conductivity. Makhopadhyay et al., [34] discussed the
two temperature linear thermo elasticity in the frame
work Hilbert Space Ibarahim and Youssef [35]
developed a new model of thermo elasticity depend
upon fractional order of strain and derived system of
differential equations for governing equations having
one temperature and two temperature.

Since the nineteenth century, Geophysicists shown
keen interest in surface waves produced during the
seismic movement. The most destructive surface waves
are Rayleigh surface waves that transmits seismic
range phase velocities along stress free surface and
amplitude continuously decaying exponentially with
increase in depth. In case of stratified semi-infinite
medium, these waves are dispersive, otherwise these
are non-dispersive.

In the present study, an effort has been made to study
the influence of rotation in the presence of magnetic
field for the Rayleigh surface wave propagation in
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transversely isotropic medium at two temperature in the
context of Three Phase Lag (TPL) Model. Frequency
equation has been derived for particular cases of
Isothermal and thermally insulated. Effects of variation
of rotation in the presence of magnetic field on
attenuation coefficient on Rayleigh wave velocity has
been demonstrated graphically. Comparison of
attenuation coefficient and Rayleigh wave velocity for
various thermo-elastic models with respect to wave
number has been discussed.

Il. GOVERNING EQUATIONS

Maxwell Equation are followed as

Vxﬁ:i,VxE:—%—B,V.E:O,E:yﬁ (1)
t
Maxwell Stress
o, =M, (Hh, +H h - (Hh)S, @
In deformable media modified Ohm’s is written as
f:G[E+%—ux1§] ©)
t
The Strain-Displacement Relation:
€y = %(”w‘ tuy,) “
The Energy equation
-4q;; = pT,S (%)
The Energy-Strain-Temperature relation
pS =&®+ﬁy€y (6)
T[)

The Stress- Displacement — Temperature are given as
Oy = Cplhyy T C3lty 53— 50

O3 = Cpplly, + CpUss — 5O

Oy =cylu;+us,] (7)
The Two- Temperature relation
O=T-a (T, +T5) (8)

The dynamical equations of elastic medium under
rotation in the effect of Lorentz force

Oyt 05,5+ F, =pi+ Qz”] +2Qu,)
Oy, + 0y + F = piy, - Q%uy —2Qui,) (9)

The Modified Fourier Law under Three Phase Lag
Model

) . ) 9 T, & 10
—KU[1+TT aJT,l.j—lqj [Iﬂ", at}v,ij =[1+rq §+§ 3’21% (10)

where av_’f =T
Jt
lll. NOTATIONS

o = Conductivity of Material
M, = magnetic permeability

’[j

k = Wave number
a* = Parameter of two temperature

T, = Body's Reference Temperature

E = Electric field
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® = Conductive Temperature

¢ = Rayleigh wave’s phase velocity

H = H, + h where F  initial magnetic field and j
perturbed magnetic field and H is magnetic field
c,.0, 0, oStressTensor Components

K1 and K3 = components of thermal conductivity

K,  and g = components of material constant
characteristic of elastic Solid,

Ce = Specific heat at constant strain
B, B, =thermal Modulus

IV. FORMULATION OF THE PROBLEM

Consider an isotropic thermo-elastic medium which
have x3 = 0 is at stress free surface. Assume that the
plane strain problem parallel to x; x3 plane, propagation
of Rayleigh wave is along the direction of x; axis in
unstressed and unstrained medium and the

displacement vector u = (u,,0,u,), constant magnetic
field vector H, = (0,H,,0)

Coylly gy + Caglhy 33 + (€5 + 04y U5 45 - 59, (11)
+ /’lfH[)z(ul,ll tus;;)=pU, + 92’/‘1 +2Qui;)
(644 +cg )“1,13 teyUyy + s g — B:0,, (12)
+ lueH[)z(uLIS tiy5) = Py — Q2’/‘3 -2Qu,)

9 ]0T,, 9 ]0T,,
K1|:1+TTE:| Fy +K3|:1+TT$:| Fy (13)

+ Kl*[l +7, %}T‘“ + Kz*[l +7, aaiz}T‘“

2 ot?
K, =K, .K;=K,, K: :KTI’K; :K;

7’ 92 92
={1+f4+ 4 }812[pce®+T<,(ﬁlul‘l+ﬁ3u3‘3)]

V. BOUNDARY CONDITIONS

The Mechanical and thermal boundary conditions at
thermally stress free surface are as follows:
(a) Tangential stress component vanished

0,+0,=0 (14)
(b) Normal stress component vanished
0, +0,=0 (15)

(c) Thermal conditions g;+ m® =0 For thermally

insulated surface m— 0 and for isothermal surface m
—> o0, 033 and o5 are Maxwell stress Tensor (16)

VI. SOLUTION OF THE PROBLEM

The relation between displacement components us, ug
and displacement potentials ¢(x,, x,,1), ¥ (x,, x5,1) I8
as follows:
ul:a¢_ay/;u3: a¢+ay/

ox, 0x, ox, dx,
Substitute the value of ui and us in Egns. (11-13) we
obtain the following equations

Singh & Kumari International Journal on Emerging Technologies

cufy + (e + 20,085 = B0+ 1 H (P +63) (17)
=p@-Q%+2Qy)

W — W s e+ e )W+ H (<Y ) (18)
= p(- - Q’y +2Q9)

(Cas + €y + oy + b =B,0+ 1 Hy (9, +0:)  (19)
=p(@-Q%p+2Qy)

(C33 —Cy _C13)W,33 +C44W,11 = p(W_QZW"' 2Q¢) (20)

oT i oT
11K, 1+773} 8;3

>
1
—_
+
=
N
¥
| S
v
<
v

. d . d
+K, [1 +7, g}rn +K, [1 +7, E}Tﬁ

7’ 9’ iil)ce‘g'*'Tn(ﬁl @, -V ):|
atl _+ ﬁ} (¢.33 +V/.31 )) (21)

only Egns. (17), (20) and (21) are considered to be the
solutions that satisfy the boundry conditions..

VIl. NORMAL MODE ANALYSIS

Consider the harmonic wave propagation along X,
direction and the solution of above Eqns.(17), (20) and
(21) in the following form:

¢ = F(xy)e

¥ =G (x;)e"

T = H (x;)e*™™®

Substituting the value of Egn. (22) in Eqgns. (17), (20-21)
[(Ci3+20,+ 1, H,)D? = (¢, + p,Hy K + pk*c® + pQ°1F  (23)
+2ikepQG - S,(1+a’k’> —a"D*)H =0

[(Cyy = Coy =€) D% + (k3 + pQ° — ¢, k*)IG — 2ikepQF =0 (24)

(22)

ik ck,z, —k’t,k," + pc,(1+a’k> —a D> )k*c*} +
(k,"t, — ik ;ke,)D*1H + (T, B, D> =T, B,k* Yk*c*F
+(ikB,T, —ik B, T, )k*c’DG =0

(25)

d2 2.2_2
whereD2=F,75=1—ikcrq— 5 g
z

7, =1-ikcz,, 7 ,=1-ikecry, rz_ﬁ
75
(-l
TS
solving the Egns. (23-25) for we get the following
relation

(D°+RD* +SD* +T)(F(x,),G(x;),H(x;)=0

which can be written as

(D= r*)X(D* =1, )D*=r)F.G,H)=0(26)
and its characteristic Equation can be written as

A+ RA+SA+T =0 (27)
where r;, 1, and r; are the positive solutions of above
characteristic Eqn. (27)

1 .
n= \/3[21'8111( f)—R]
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rzz\/;_R_j(\/gcos f +sin f)]

1 . :
r}:\/3[—R+}(\/§COS S+ sin f)]
where j:«/m,f=5in;d and

2R*-9RS + 27T

d = 3
2j°
_ a"b,by, (b, —b2)1<4
- (b7 _bs)la*{(bl +b3)b|3 +b|2ﬂ|}_ (bl +b3)(b9 _blo)J
+|: (bﬁ_b7){(b1+b3)(b15+b5b13_b8)}k2 :|
(b7 _bs)la*{(bl + bs)bls +b12:61} - (bl +b3)(b9 _bl[))J

+ {(b, +b,)(by —by)—a’'b,by, "'a*bnﬁl}k2
(b7 _bs)la*{(bl +b3 )b13 +b12:61 } _(bl +b3)(b9 _bl())J

+ {b7 (bl +b3)(bl[) _bg)k2 + a*b7b12ﬁ1}k2

(b7 - bs)la*{(bl + bs)bls + blZﬁl } - (bl + bz)(bg - bl[))J
+ b4 (b9 _bl[))(b6 _b7 +b1 +b3)

(b7 _bs)la*{(bl +b3 )b13 +b12:61 } _(bl +b3)(b9 _bl())J

+ Bibsby, (bs —by) —a’b,by, B

(b7 - bs)la*{(bl + bs)bls + blZﬁl } - (bl + bz)(bg - bl[))J

s= (b, +b,){ (b5 — b +bsb,,)(b, —b,k>)k>}
_b )la*{(bl +b3)b13 +b12:31}_(b1 +b3)(b9 _bl())J
(by +by){byby (b; —by) Je*
(b7 —b )[a {(by +b3)byy + by B} — (b, +by)(by —byy)]
—b,)(b; —b,s)+b, (b, —b,))+a’b,b,k*

(b7 —b )[a {(by +by)bys + by B} — (b, +by)(by —byy)]

b, (b, —b,)k*> —a’b.b,,k° 1
(b7 —bo)a" (b, +by)byy + b, B} — (b, +b,)(by —byy) |

b, (b, —b, )by, —b, +b.b, )k
(b7 —bo)a" (b, +by)by + by, B} — (b, +b,)(by —byy) |

.| a'b, blsk +b, (b, —by)b, k> —b,)—a b7b“,Blk4
(b7 _bs)la*{(bl +b3)b|3 +b12ﬂl}_(bl +b3)(b9 _bl())J_

+| Bbsb, (b, —b k> +(a’b,b,, B, — B.bbb, —a*bmbmz)kz:l
(b, —by)\a’ {(b, +b,)b,, +b,B,} —(b, +b,)(b, —b,,)]
+  ikBab, (b, —b,)+ Bbb.b, +b,’ (by —b,)
| (b, = by)la” (b, +b)by, +b,B,) = (b, +b)b, —by,)]|
Tz{ (b,k* —b,)(bs — by +bsb,)[(by +by)k* —b,k*] }
b7 _bs)la*{(bl +b3)b13 +b12:31}_(b1 +b3)(b9 _bl())J
+ b, b, — b, +bsb,, k> |
| (b, = by)la” (b, +b)by, +b,B,) = (b, +b)(b, —by,)]|
+|: ikﬁlbsbm (b12 _bn) + ﬁlebll (177k2 _b4)k2 :|
(b7 _bs)la*{(bl +b3)b13 +b12ﬁ1}_(b1 +b3)(b9 _bl())J

where

b, =c;+2c,;b,=c,;b,=uH 0 ;

b, = pk’c’ + pQ’;b;=1+a’k’;b, = cyy — Cy3;
b, =cuiby =k 'T,5by =k, T,5b,, = iK ke T,;
b, =T,Bk’c’;b, =T,B:;k’c’;b, = pc,c’;

b,, = 2ikc pQ; b,
Thus the Eqgn. (26) is bounded whenx ,— «~ can be

=iKc7,

written in other Words as follows

3
F(x;) =Y R, exp[ —rx;]

i=1

(28)
G (x, )—ZS exp[ —r,x;5]

3
H (x;) ZT exp[ —7,x;]

where Rl,Sl,Tl (i=1, 2, 3) are constants, using Eqn. (28)
in (23-25), we obtained the following relations

T, = diRi and S, = p,R,

b14
[(by —b,)r,> + (b, —b,)k”]
ik(by, =b,)rp, - (b12ri2 _bllkz)
[bsk? = bk* + by (bs —a’r>)k? + (by — byy)r”
Hence, the solutions of Egns. (17), (20) and (21) are
given by

o= 23: R, expl —r;x; +ik(x, — ct)]

i=1

where D, =

=

3
v = Z PR, expl —r,x; + ik (x, — ct)]

i=1

w

T = d,R, expl —rx, + ik (x, — ct)]
i=1

VIIl. DERIVATION OF FREQUENCY EQUATION

The heat flux vector's normal component gz is
associated to two temperature gradient 00 by the

dox,
succeeding
-K (1+7TD’—K "A+7,D") |00 (30)
43 = 2 ai
X3

D'(1+7,D’ 45 2 D’?)

Where D’zai » @=T-a (T, +T)
t

The stress components in terms of thermo elastic
potentials at two temperature are given by:

O3 = C13¢,11 + C33¢,33 —(c3 =)W 5 — 5,0
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Ou = UH, (P, +05)
Applying the condition ¢, + &,, = 0
Hence, we obtain
i:(cﬁ U HDE (0 M H K+ —633)iki;pl.} _o31)
T -Bb—a'r)d, ’
O =020 -Y+y,)ada, =0
Applying the condition o, +&,, =0
3
> 2+ 52y p, + 200, J, = 0 (32)

i-1

Applying the conditon 4. + »® = 0 hence, the
equation obtained as:

_23: [(bs —a'r’)ar, + m)]diAl. =0 (33)

Eqgns. (31-33) have non-trivial solution if
|:(C33 + ﬂeHoz)r12 - (C13 +/19H02)k2 + (C13 —Cg )ikﬁp1 - ﬂs(bs —a*rf)d&

(po1," + k> py +2ikr,)(bs —a'r,” )ar, + m)d,

L (psry” +k*py +2ikr,)(bs —a’r,” ) ar, + m)dj
+

l(%#ﬂﬂf)rf ~(G+HHH) I+, )iksp,~ B —a*rzz)dzl

(pyry + k2 py + 2ikr,)(by — a'r;” Yo, + m)d,

{— (p,r> + k*p, + 2ikr,)(bs — a’ry ) (ar, + m)dj
+

l(cjsﬂéflf)rf —(Gs U H W+ =ik, — Bl —a*'f)fél

(p,r + k2 p, +2ikr)(bs — "1, )ar, + m)d,

|:—(p2r22 +k2p, +2ikr, )by —a"r ), +m)dj

=0

(34)
Egn. (34) represent the Rayleigh wave's frequency
Equation for orthotropic thermo-elastic half space at
two temperature in context of TPL model

IX. PARTICULAR CASE

Case (1) Thermally Insulated Surface: By applying
the boundary conditions g; = 0 on x3 = 0 for Thermally
Insulated surfaces, Eqn. (34) transformed to

(B2~ H L HOWR 5=y ikip — By —d )
(p,r,° + k2p, + 2ikr,))(bs — a'r,>)(r,)d,
= (psry” + k7 py + 2ikry)(bs — a’r," )(ry)d,
+

(s HE (6 W+ ks, — B —d )
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(pyry +k2p, + 2ikr )by —a™r>)(r)d,
—(pr* + k7 p, + 2ikr ) (bs — a1, )(ry)d

+
[t I~ R+ s ik — Bl —d )|
(p,r> +k*p, +2ikr)(bs—a’'r,”)(r,)d,
= (pyry” + k7 py + 2ikry)(bs —a"r” )1 )d,

=0

(35)
Case (2) Isothermal Surface: By applying boundary
condition T = 0 on x; = 0 for isothermal surfaces, Eqn.
(34) transformed to

(s~ H L HOWR -+ —cyikip — By —d 1)
(p,r,. +k*p, + 2ikr )by —a*r,>)d,
= (psrs" + k7 py+ 2ikr )by —a'r,’)d,
+
(e 2V~ HW +ciy = ikip, BB —d )
(p,ry> + kPpy+ 2ikr )by —a’r’)d,
- (p1r12 + k2p1 + 2ikr )(bs — a*r32)d3
+
eyt~ HE IR+ ik, — B~ 7
(p,r,> +k>p, +2ikr)(b,—a’r,’)d,
- (p2r22 + k2p2 + 2ikr, )(bs — a*’]z)dl

=0
(36)
Case (3) Rayleigh wave's frequency equation in

isotropic Elastic half-space: The frequency of orthotropic
elastic half space is obtained as follows:

2 2

PC—Cy pec” —¢cy | _
2(633 - 613) ( ) -

Ci3 = Cyy —Cp3 Cy T Cp3

2 2
ey (pe” —¢yy) 4 P —Cu 1
Ci3
C3 t 2C44 C33 —Cy —Cp3

Substitute the value ¢55,¢,,,C,5,Cyy, In Egn. (27)

37)
cy =0y =21+ ey = Aiey = 1

C2 2 C2 C2
RS
c, c, ¢, (38)

Hence the resulting Eqn. (38) represents Rayleigh wave
frequency equation in isotropic elastic half space.

where ¢ > = # and ;* = 2p+ A
P
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Case (4) When we put 7, and

K,'=K, =0 Ean. (34) The reduced frequency

equation is similar for the case of theory of classical
coupled thermo elasticity and this result comply with the
result obtained by Singh et al., [28]

Case (5) When we takefq =7, =0 and T,# 0 in

:’Z'T:O

and ¢ * = k,” = 0 the Eqn.(34) reduced to

frequency equation of LS Model.
Eqgn. (34) transform to frequency equation of GN Model
Type-Ill when substitute t,=7,=7,=0

X. NUMERICAL RESULTS AND DISCUSSION

Generally phase velocity & and wave number (k) are
considered as complex quantities.
Ifitis assumedthat ¢! = ' + iw 'Q

The number
k=M +iQ Here

wave can be represented as

_ ® in which B and Q are
B

real. The exponent term in Eqgn. (31) becomes
iM(x—Bt)—Qx. Here B represents the propagation
speed, attenuation coefficient represents Q and angular
frequency of waves represented by @

It is assumed that the succeeding values of compatible
parameters used for numerical calculations as per for
transversely isotropic material Hawwa and Nayfeh [11]
as follows:

¢,, =128 MPa T, =298K

c,;3 =6MPa p =8.836x10°kg/m?
Cys =32MPa K, =100W /mks

¢, =18 MPa K, = 25W /mks

c, =2x10™"J/kg B =0.04/m%

K, =17W/mks K, =21 W/mks
7,=2x107"s 7 =15x107"s

7. =1x10 ®s

v

Effect of variation of rotation in the presence of
magnetic field on wave velocity and attenuation
coefficient of Rayleigh waves with respect to wave
number and frequency has been represented
graphically at material parameter a* = 0.2. For numerical
purpose we consider u, = 1.2Hm™?, comparison of
Rayleigh wave velocity and attenuation co-efficient for
Three-Phase-Lag (TPL) Model, GN-Model and LS
Model with respect to wave number has analytically
calculated and graphically represented.
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Fig. 1. Effect of variation of magnetic field on Rayleigh
wave velocity for thermally insulated surfaces w.r.t.
wave number.
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Fig. 2. Effect of variation of magnetic field on Rayleigh
wave velocity for Isothermal surfaces w.r.t. wave
number.
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attenuation coefficient for thermally Insulated surfaces
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Fig. 5. Effect of variation of rotation on Rayleigh wave
velocity for thermally Insulated surfaces w.r.t. wave
number.
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Fig. 6. Effect of variation of rotation on Rayleigh wave
velocity for isothermal surfaces w.r.t. wave number.
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Fig. 7. Effect of variation of rotation on attenuation
coefficient for thermally insulated surfaces w.r.t. wave
number.
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Fig. 8. Effect of variation on attenuation coefficient for
isothermal surfaces w.r.t. wave number.
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Fig. 10. Effect of variation of rotation on Rayleigh wave
velocity for isothermal surfaces w.r.t. frequency.
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Fig. 9. Effect of variation of rotation on Rayleigh wave
velocity for thermally insulated surfaces w.r.t. frequency.

Fig. 11. Effect of variation of rotation on attenuation
coefficient for thermally insulated surfaces w.r.t.
frequency.
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Figs. 1, 2 shows the effect of variation of magnetic field 3
(Hy =10;H, =10.5;H, =11) at material parameter at % 05
a* = 0.2, on Rayleigh wave velocity with respect wave kS,
number. It has been observed that With the increase of £
Wave number the Rayleigh wave velocity decreased 2
more sharply in case of Isothermal surfaces than CCD
insulated surfaces but if we consider the case of S
thermally insulated surfaces the effect of magnetic field ©
shows flatten Curve about the line Rayleigh wave S
velocity at around zero but it is continuously going on =z
decreasing but not as sharply. 1 15 5 25 3 35
Figs. 3, 4 shows the effect of variation of magnetic Field ’ ’ ’
(H,=10;H,=10.5;H, =11) material parameter at Wave Number
a’ = 0.2 on attenuation with respect wave number, It Three Phase-L
has been observed that with the increase of wave ree Fhase-tag
number the attenuation Coefficient decreased more | e GN Model
sharply in case of isothermal Surfaces than insulated LS Model
Surfaces but if we Consider the case of thermally
insulated surfaces the effect of magnetic field shows g J
flatten Curve about the line Attenuation Coefficient at . . . -
Zero Fig. 14. Comparison of attenuation coefficient w.r.t.
wave number for various thermoelastic models.
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Figs. 5, 6 shows the effect of variation of rotation
(Q =10:;Q =15:Q = 20 ) Material Parameter at " =

0.2, on Rayleigh wave velocity with respect wave
number, it has been observed that with the increase of
wave number the Rayleigh wave velocity decreased
more sharply in case of isothermal surfaces than
insulated surfaces but if we consider the case of
Isothermal surfaces when wave number is about more
than 2.5 there is increase in the Rayleigh wave velocity
but it is opposite in the case of thermally insulated
surfaces the wave velocity continuously decreasing with
the wave number above around 2.5.

Figs. 7, 8 represent the effect of variation of rotation
(Q =10:;Q =15:Q = 20 ) at Material Parameter a* =
0.2, on attenuation coefficient with respect to wave
number, it has been observed the with increase of wave
number the attenuation coefficient decreased more
sharply in case of Isothermal surfaces than insulated
surfaces but if we consider the case of isothermal
surfaces when wave number is about more than 2 there
is Increase in the attenuation coefficient more sharply
but it is opposite in the case of thermally insulated
surfaces, the attenuation coefficient continuously
decreasing with the wave number above around 2
shows more flatten curve around attenuation coefficient
around zero.

Figs. 9, 10 shows the effect of variation of rotation
(Q =10;Q =15:Q = 20) at material parameter

a® = 0.2 for Rayleigh wave velocity with respect to
frequency, it has been observed that with the increase
of frequency, the Rayleigh wave velocity decreased
more sharply in case of isothermal surfaces than
insulated surfaces but if we consider the case of
isothermal surfaces when frequency is about more than
0.025 there is increase in the Rayleigh wave velocity
more sharply but it is opposite in the case of thermally
insulated surfaces, the wave velocity continuously
decreasing with the frequency above around 0.025
shows more flatten curve around Rayleigh wave velocity
around zero but continuously decreasing.

Figs. 11, 12 shows the effect of variation of rotation
(Q =10:;Q =15:Q = 20 ) at material parameter a* =

0.2 on attenuation coefficient with respect to frequency.
It has been noticed that with the increase of frequency
the attenuation coefficient decreased more sharply in
case of isothermal surfaces than insulated surfaces, but
if we consider the case of isothermal surfaces when
frequency is about more than 0.023, there is increase in
the attenuation coefficient more sharply but it is opposite
in the case of thermally insulated surfaces the wave
velocity continuously decreasing with the frequency
above around 0.027 shows more flatten curve around
attenuation coefficient around zero but continuously
decreasing.

Fig. 13 shows the comparison of Rayleigh Wave
Velocity with respect to Wave Number for different
Thermo-elastic Models (Three-Phase-Lag (TPL) Model,
GN-Model, LS-Model) at material Parameter a* = 0.2, it
has been observed that in the both cases of (Three-
Phase-Lag (TPL) Model, GN Model) Rayleigh wave
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velocity escalated with the surge of wave number up to
2 but as wave number increase more than 2, the
Rayleigh wave velocity continuously going on decrease
not sharply. As far as curve of LS Model Concerned it
Rayleigh wave velocity firstly increase with the surge of
Wave Number but it decreases sharply when wave
number increase about 1.3 and curve of Three Phase
Lag Model and GN Model almost Coincide with each
Other.

Fig. 14 shows the comparison of variation of attenuation
coefficient w.r.t. wave number for different thermo-
elastic Models (Three-Phase-Lag (TPL) Model, GN-
Model, LS-Model) at material Parameter a" = 0.2, it has
been observed that in both cases of (Three-Phase-Lag
(TPL) Model, GN Model) the magnitude of attenuation
coefficient declined sharply , with the surge of wave
number in the range between 2 and 2.5 but as wave
number increase more than 2.5, the attenuation
coefficient continuously going on increasing sharply. In
case of LS Model concerned, attenuation coefficient
increase with the increase of wave number and the
curves of Three Phase Lag Model and GN Model almost
coincide with each other.

XI. CONCLUSION

The propagation of Rayleigh wave in the influence of
rotation with two temperature in the purview of Three-
Phase-Lag (TPL) has been investigated. The frequency
equations for particular cases such as thermally
insulated surfaces and isothermal surfaces has been
derived. Effect of variation of rotation in the presence of
magnetic field has been demonstrated graphically on
the Rayleigh wave velocity and attenuation coefficient.
Comparison of Three-Phase-Lag (TPL), GN Model, LS
Model for Rayleigh wave velocity and attenuation
coefficient with respect to wave number has been
discussed. Based upon above numerical discussion and
theoretical calculations, it can be concluded that if the
value of rotation is increased, the magnitude of Rayleigh
wave velocity and attenuation coefficient is decreased.
And with the increase in magnetic field, the magnitude
of Rayleigh wave velocity and attenuation coefficient is
increased. In isothermal Surfaces, attenuation
Coefficient and Rayleigh wave velocity shows sharp
variation as compared to thermally insulated surfaces.
Rayleigh wave velocity attains more value for Three-
Phase-Lag (TPL) and GN Model as compared to LS
Model. Both the Curves for Three-Phase-Lag (TPL)
Model and GN Model coincide with each other. All these
analytical calculations are theoretical one but this result
can be helpful for researchers working in the field of
Seismology and Geophysics.
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