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ABSTRACT: The The main purpose of this paper is to introduce geometric Zweier lacunary strong 

convergent sequence spaces ( )0
θN Z G ′   , ( )N Z Gθ  ′   , ( )N Z Gθ

∞  ′   consisting of all sequences ( )kx x= such that 

( )Z G x    are in  the spaces 0 , N and N Nθ θ θ
∞  respectively, which are normed linear spaces. We also prove 

certain topological properties and inclusion relations by introducing their geometric Zweier lacunary 
statistical convergence. 
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I. INTRODUCTION AND PRELIMINARIES 

 Byω , we denote the space of all real valued sequences 

and any subspace of  ω  is called a sequence space. 

Let l∞ , c  and 0c be the linear spaces of  bounded, 

convergent and null sequences ( )kx x=  with real or 

complex terms, respectively. It is well known that a 

sequence space X with linear topology is called a K -

space if and only if each of maps :np X →ℝ defined by 

( )n np x x= is continuous for all n∈ℕ . A K -space X is 

called FK-space if and only if X  is a complete linear 
metric space. An FK- Space is a complete metric space 
for which convergence implies co-ordinate wise 
convergence. An FK-space whose topology is 
normable, is called a BK-space or a Banach co-ordinate 

space. For a sequence space X , the matrix domain AX  

of an infinite matrix A  is defined by 

( ){ }:A kX x x Ax Xω= = ∈ ∈            (1.1) 

where the space AX is the expansion or the contraction 

of the original space X [4] for more details. 
By a lacunary sequence we mean an increasing integer 

sequence ( )rkθ = such that 0 0k = and 

1:r r rh k k −= − → ∞ as r → ∞ . Here the intervals 

determined by θ  will be denoted by ( 1: ,r r rI k k−=   . 

Freedman et al., [1] defined the space of lacunary 
convergent sequences Nθ  

as  

( )
1

: : lim 0,forsome .θ ω
→∞

∈

  
  = = ∈ − =      

∑ ℓ

r

i i
r r i I

N x x x l
h

 

               (1.2) 
which is a BK-space with the norm 

1
sup

r

iN
r r i I

x x
hθ

∈

= ∑              (1.3) 

for 0l = in equation (1.2),  the  space is denoted by 0
Nθ . 

Also; 0
0 , .

N
N

θ
θ

 
 
 

is a BK-space. Sengönül [11] 

introduced the spaces Z ′  and 0Z′  as the set of all 

sequences such that Z -transformations of them are in 

the spaces c  and 0c  respectively, i.e., 

( ){ }: andkZ x x Zx cω′ = = ∈ ∈  

( ){ }0 0:kZ x x Zx cω′ = = ∈ ∈ , 

where ( ), , 0,1,2,.....nkZ z n k′ = = with 

( )
1

, 1
,2

1,otherwise
nk

k n k
z n k N


≤ ≤ +

= ∈



.  

This matrix is called Zweier matrix. Türkmen and Başar 
[3] introduced geometric sequence spaces for 

0
, , ,

p
X c c l l

∞
=  as  

( ) ( ) ( ){ }

( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }

( ) ( ) ( )

0
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c G x x G G x

l G x x G G x

ω

ω

ω

ω

ω

∞
∈
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∞

=

= = ∈ ∈

= = ∈ < ∞

= = ∈ =

= = ∈ =

 
= = ∈ < ∞ 
 

∑

ℕ

ℕ

⊖�   

 and the geometric complex number 

( ) { }
{ }

: :

/ 0

z
G e z= ∈

=

ℂ ℂ

ℂ
 

where ( )( ), ,G ⊕ℂ ⊙  is a field with geometric zero 1 and 

geometric identity e, and we define the geometric 
addition, subtraction etc as follows: 

ln ln

/

y x

x y xy

x y x y

x y x y

• ⊕ =

• =

• = =⊙

⊖  

e
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( ) ( )0 1 , . , in short

• ≥

• = =⊙

G G G

G G

x y x y

x y y x i e x y y x

⊖ ⊖

⊖ ⊖ ⊖ ⊖ ⊖ ⊖

 

II. MAIN RESULTS 

We introduce the geometric form of lacunary convergent 

sequence space Nθ as follows:

( ) ( ) : lim (1 1)

r

GG
i r i

r
i I

N x x G G h G xθ ω
→∞

∈

 
 

= = ∈ = 
  

∑ ℓ⊖ , 

for some ℓ . 
The space ( )N Z Gθ  ′   is a BK-space with the norm 

sup1G

r

GG
r iN

r i I

x h G x
θ

∈

= ∑ . 

We define the geometric Z-transformations of the 

spaces c  and 0c  as  

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }0 0

: and

:

k

k

Z x x G Z G x c G

Z x x G Z G x c G

ω
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where ( ) ( )( )( ), 1,2,...nkZ G z G n k= = with 

( ) ( )
, 1

,
1, otherwise

≤ ≤ +
= ∈


nk

e k n k
z G n k N .  

This matrix is called geometric Zweier matrix. 

Geometric Zweier Lacunary Strong Convergence 

Now we introduce the new geometric sequence spaces 
involving Zweier lacunary sequences of strictly positive 
real numbers, defined as follows:-  

( ) ( ) ( ) ( )1: lim1

r

G

i r i i
r

i I

N Z G x x G G h G e x xθ ω −

∈

 
 

 ′  = = ∈ ⊕  
  

∑ ℓ⊖

,forsome 1l = ,           (2.1.1) 

( ) ( ) ( ) ( )1: sup1

r

G
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r i I
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θ
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∈

 
 

 ′  = = ∈ ⊕ < ∞  
  

∑
.            (2.1.2) 

Theorem 1. The space ( )N Z Gθ
∞  ′    is a normed linear 

space with respect to the norm 

( ) ( )1

1
sup
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Thus .
G

G

∆
 is a norm on ( )Gℂ  .     

Theorem 2. The space ( )N Z Gθ
∞  ′    is a Banach space 

with respect to the norm 

( ) ( )1

1
sup

r

GG
i iN Z G

r r i I

x G e x x
hθ

∞ − ′  
∈

= ⊕∑ . 

Proof: Let ( )nx be a Cauchy sequence in ( )N Z Gθ
∞  ′   , 

where  
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( )( ) ( ) ( ) ( )( )1 2 3, , , ..... ,
n n n n

n ix x x x x n= = ∀ ∈ℕ and 
( )n

ix is 

the 
th

i  co-ordinate of nx . Then 

( )

( ) ( )( ) ( ) ( )( ){ }1 1sup1 1

as m,n

r

G
n m N Z G

G
n n m m

r i i i i
r

i I

x x

h G e x x x x

θ
∞  ′  

− −

∈

= ⊕ ⊕ →

→ ∞

∑

⊖

⊖

 
Hence we get      

( ) ( ) ( ) ( )
1as n,m ,since 1.

G G
n m n m

i i i ix x i N x x→ → ∞∀ ∈ ≥⊖ ⊖

Therefore for fixed i , the i -th co-ordinates of all 

sequences form a Cauchy sequence in ( )Gℂ .Let

( ) ( ) ( ) ( )( )1 2 3
, , , .....

n
i i i ix x x x= be a Cauchy sequence in 

( )Gℂ . Since ( )Gℂ  is complete, ( )n
ix  converges to ix  

(say) as  

( ) ( ) ( ) ( )

( )

1 2 3

1 2 3

, , ,....., converges to

, , ,....., ,.....

nn n n
n k

k

x x x x x

x x x x x

 =  
 

=

 

( )
lim ,

n
i i

n
G x x i

→∞
⇒ = ∀ ∈ℕ  

Further for each ( )1, N Nε ε> ∃ =  such that ,n m∀ ≥ℕ  

we have 

( ) ( )( ) ( ) ( )( ){ }1 1sup1

r

G
n n m m

r i i i i
r

i I

h G e x x x x ε− −

∈

⊕ ⊕ <∑ ⊖

and 

( ) ( ) ( )

1 1

lim lim ,
G G

n m n
i i i i

m m
i i

G G x x G G x x nε
∞ ∞

→∞ →∞
= =

< < ∀ ≥∑ ∑ ℕ⊖ ⊖

 

since ε is independent of  i . Hence we obtain 

as→ → ∞nx x n . Now  

( )

( ) ( )

1 1 1 1
G N N N N

i i i i i i i i

k

x x x x x x x x

O e

x x N Z Gθ

− − − −

∞

⊕ = ⊕ ⊕ ⊕

=

 ′ ⇒ = ∈  

⊖� ⊖�

 

( )N Z Gθ
∞  ′ ⇒    is a Banach space with continuous co-

ordinates and it is a BK-Space. This completes the 
proof.     

III. GEOMETRIC ZWEIER LACUNARY STATISTICAL 
CONVERGENCE 

Fast [5] and Schoenberg  [6] introduced independently 

the notion of statistical convergence. Let K be a subset 

of the set of natural numbersℕ .Then the asymptotic 

density of K denoted by ( )kδ  is defined as

( ) ( ) { }lim 1 :
n

k n k n k Kδ = ≤ ∈ , where the vertical bars 

denote the cardinality of the enclosed set. A number 

sequence ( )kx x=  is said to be statistically convergent 

to the number L  if, for each 0ε > , the set 

( ) { }: kk k n x Lε ε= ≤ − > has asymptotic density zero; 

that is, ( ) { }lim 1 : 0k
n

n k n x L ε≤ − ≥ =  this concept of 

statistical convergence from different aspects has been 
studied by various authors [5-10].  Here we write 

( )lim or kS x L x L S− = → . We use S  to denote the set 

of all statistically convergent sequences. The idea of 
statistical convergence was introduced by Fast [10] and 

studied by several authors [5-10]. A sequence ( )ix x=  

is said to be lacunary statistical geometric Zweier 

convergent to L  if for 1ε >  

( ) ( ) ( ) ( ) ( ){ }: lim1 1
G

i r
r

S Z G x x G h Z G Kθ θω ε ′  = = ∈ =   

where, ( ) ( ) ( ){ }1:
G

r i iZ G K i I e x x Lθ ε ε−= ∈ ⊕ ≥⊖  . 

 If  ( )x S Z Gθ  ′ ∈   , then we write ( )( )ix L S Z Gθ  ′ →   . 

Let ( ){ } ( )1
1: and

G

r r i iI i I e x x L CKθε ε−= ∈ ⊕ ≥ =⊖  

( ){ }2
1: .

G

r r i iI i I e x x L ε−= ∈ ⊕ <⊖  

IV. INCLUSION THEOREMS 

In this section we first give some inclusion relations 

between the spaces ( )( )N Z Gθ  ′   and ( )( )S Z Gθ  ′    and 

show that they are equivalent for bounded sequences. 

We also study the inclusions ( )( ) ( )( )S Z G S Z Gθ ′   ′ ⊆   

and ( )( ) ( )( )S Z G S Z Gθ  ′   ′ ⊆    under certain restrictions 

on { }rkθ = . 

Theorem 1.  Let { }rkθ = be a lacunary sequence; then 

(i) ( ) ( )i ix L N Z G x L S Z Gθ θ
    ′   ′ ∈ ⇒ ∈      

 

(ii) ( ) ( )is a proper subset ofN Z G S Z Gθ θ ′   ′      . 

Proof.  (a)Let 1ε > and ( )( ) ,θ  ′ →  ix L N Z G  we can 

write  

( ) ( )

( ) ( )

1

1 1

1
1

1

r r

G G

i i r i i
r i I i I

r G

G e x x L h G e x x L
h

h Z G Kθ ε ε

− −

∈ ∈

⊕ ≥ ⊕

≥

∑ ∑⊖ ⊖

 

It follows that ( )( )ix L S Z Gθ  ′ →   . 

(b) Now to establish the inclusion

( ) ( )N Z G S Z Gθ θ ′   ′ ⊆    , let θ  be given and define ix

to be 1,2,....., rh 
 

at the first rh 
 

integers in rI , and 

1ix = otherwise. 

Note that x  is not bounded. As we have for every  

1,ε >  

( ){ }
1

11 1 1

r

G
G

r i i

i I

h G e x x L ε−

∈

⊕ ≥ →∑ ⊖ ⊖  

as r → ∞    

i.e.,  ( )( )1ix S Z Gθ  ′ →   . 

On the other hand, 

( ){ }
2

11 1 1

r

G
G

r i i

i I

h G e x x L ε−

∈

⊕ < ≠∑ ⊖ ⊖  
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Hence ( )( )not 1ix N Z Gθ  ′ →   .                

Theorem 2. (i) If 

 
( ) ( )( )

( )( )

 and i

i

x N Z G x L S Z G

x L N Z G

θ θ

θ

∞  ′   ′ ∈ →   

 ′ ⇒ →  

 

(ii) ( ) ( ) ( ) ( )S Z G N Z G N Z G N Z Gθ θ θ θ
∞ ∞ ′   ′   ′   ′ ∩ = ∩         

Proof: Suppose that ( )( )ix L S Z Gθ  ′ →     and

( )x N Z Gθ
∞  ′ ∈   say ( )1 for all .

G

i ie x x L M i−⊕ ≤⊖  

Therefore we have for every 1ε >  

( )

( ) ( )

( ) ( )

1 2

1

1 1

1

1 1

r

r r

G

r i i

i I

G G

r i i r i i

i I i I

G

r

h G e x x L

h G e x x L h G e x x L

M h Z G Kθ ε ε

−

∈

− −

∈ ∈

⊕

= ⊕ + ⊕

≤ ⊕

∑

∑ ∑

⊖

⊖ ⊖

Taking limit as 1ε → , we get the result. 

(ii) This is an immediate consequence of (i) and theorem 
1.                           
Theorem 3. For any lacunary sequence 

( )( ), limS Z G G x Lθ  ′  =  ⊖ implies 

( )( ) limS Z G G x Lθ  ′  =  ⊖ if and only if lim inf r
r

G q e> , 

then there exists a bounded ( )( )S Z Gθ  ′  −   summable 

sequence that is not ( )( )S Z G ′  −  summable (to any 

limit). 
Proof: Suppose first that lim inf r

r
G q e> ; then, there 

exits eδ >  such that rq e δ≥ ⊕  for sufficiently large r . 

which implies that 

andr r

r r

h k e

k e h

δ δ

δ δ

⊕
≥ ≥

⊕
. 

If ( )( )ix L S Z G ′ →    then for every 1ε > and sufficiently 

large r , we have 

{ }

{ }

{ }

1

1

1

1 : ( )

1 : ( )

1 : ( )

G
G

r r i i

G
G

r r i i

G
G

r r i i

k k k e x x L

k k I e x x L

h k I e x x L
e

ε

ε

δ
ε

δ

−

−

−

≤ ⊕ ≥

≥ ≤ ⊕ ≥

≥ ≤ ⊕ ≥
⊕

⊖

⊖

⊖

 

this proves the sufficiency. Conversely, suppose that

lim inf r
r

G q e> . Proceeding as in [2] we can select a 

subsequence ( ){ }r jk of lacunary sequence θ such that 

( )

( )

( )

( )
( ) ( )

1 2

1 1

and , where 1
r j r j

r j r j

k ke
e j r j r j e

k j k

−

− −

< ⊕ > ≥ − ⊕

 

Now define a bounded sequence x  by   ( )ix G e=  if 

( )r j
i I∈  for some 1,2,3,....j =  and ( ) 1ix G = . Otherwise 

it is shown in [2] that ( )x N Z Gθ  ′ ∉    but 1
G

x σ∈ . The 

above Theorem 4.2 (i) implies that ( )x S Z Gθ  ′ ∉   but it 

follows from Theorem 4.1, ( )x S Z G ′ ∈   . Hence 

( ) ( )S Z G S Z Gθ ′   ′ ⊆                   

V. CONCLUSIONS  

Our results generalize the results of Turkmen, C. and 
Başar, F. [3],  Şengönül, M. [11],  Singh, S. and Dutta, 
S. [12],  Kadak, U. [13],   and many others. As a future 
work we will study certain matrix transformation, 
inclusion relations and , andα β γ− − −  of these spaces. 

Further the present results can be extended to the m-th 
order difference sequence spaces. 
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