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ABSTRACT: Polycyclic aromatic hydrocarbons are the potent atmospheric pollutants produced due to 
incomplete combustion of organic substances. BPDE (Benzo [a] pyrene) is one of the reactive carcinogenic 
compounds of PAHs which react with genetic material DNA of the cell and may turn into tumor or cancer. In 
this paper we study the mathematical modeling of the reaction diffusion mechanism of these toxic 
compounds in mammalian cells. In this paper, compartmental modeling approach have been used with the 
inclusion of perinuclear space. To study this model, we use Modified Differential Transform Method. Also, 
the obtained results are compared with results obtained from Differential Transform Method and Numerical 
Solution to prove the accuracy and efficiency of this method. 
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I. INTRODUCTION 

The Mathematical Modelling of Intra-cellular reaction 
and diffusion mechanism is a challenging task due to 
complex cell architecture. Schematically, a mammalian 
cell is composed by cell membrane, cytoplasm (which 
contains many cell organelles like mitochondria, endo-
plasmic reticulum, golgi apparatus, etc.) nuclear 
envelope, perinuclear space, nuclear membrane and 
nucleus which contain DNA [1].  
Many researchers had developed mathematical models 
to study Reaction Diffusion Mechanism of Carcinogenic 
Polycyclic Aromatic Hydrocarbon (PAHs) in Mammalian 
Cell. In Chaudhry et. al., (2009) [6] presented a 
mathematical model by using homogenization technique 
to study the behavior of lipophilic toxic compound in 
different cell geometry to overcome the difficulty caused 
by complex and heterogeneous structure of cytoplasm. 
In Dreij et. al., (2011) [12] develop a mathematical 
model on diffusion-reaction mechanism of lipophilic 
compound to discuss the effect of various parameters 
like cell architecture, distribution of enzymes in the 
metabolism and hydrophobic nature of toxic compound. 
In Chaudhry et. al., (2012) [8] to study the impact of cell 
geometry, develops mathematical modeling of reaction 
and diffusion in the cell. Then, Dreij et al., [11], 
proposed a mathematical model using homogenization 
technique to study the intracellular dynamics of PAH De 
and role of GST in protecting DNA from damage. 
Chaudhry et al., (2012) [7] presented model to study 
reaction and diffusion mechanism in cell with 
homogenization approach which include both volume 
and surface reaction. Chaudhry and Hanke (2014) [5], 
using nonstandard compartment model presented the 
numerical solution of system of PDE describing the 
reaction diffusion mechanism in cell. Qaiser et al., 
(2015) [19], Zainab et. al., (2014) [21] studied the drug 

diffusion and reaction process in the cell using 
homogenization by 2D axi symmetric mathematical 
model with spherical and non-spherical cell including 
nuclear envelop. Noor et. al., (2015) [17] used the 
compartmental modeling approach by replacing the 
system of PDEs with system of ODEs to study cellular 
exposure of reaction and diffusion mechanism of 
carcinogenic compound by including perinuclear space. 
Chaudhry et al., (2012) [7] apply differential transform 
method to solve the system of ordinary differential 
equation developed from system of PDEs to study the 
reaction diffusion mechanism of PAHs in cell and 
compare the obtain result with numerical solution. Also, 
Patel (2017) [18]  apply Differential Transform method to 
study  compartment based model involve with reaction 
diffusion mechanism in cell including perinuclear space. 
But in this paper, we study compartment-based model 
involve with reaction diffusion mechanism in cell by 
Modified differential transform Method. This method 
gives the better solution than the usual differential 
Transform method. Also, we compare the obtained 
solution with numerical solution which concludes the 
accuracy and efficiency of the proposed method. 

II. MATHEMATICAL FORMULATION 

In this Paper, we are considering here four subdomains 
for our compartmental model namely extracellular 
medium, cytoplasm, perinuclear space and nucleus. 
Extracellular medium is the outside environment of the 
cell which contains water. Cytoplasm is that segment of 
cell between cell membrane and nuclear envelope that 
include cellular organelles and cytosol. Nuclear 
envelope is a barrier which monitors the import and 
export of molecules in and outside the nucleus. Nucleus 
carries ancestral material and is encompassed by 
nuclear membrane [2]. 
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BPDE (Benzo pyrene diol epoxide) is one of the 
carcinogenic chemical compounds of PAHs is denoted 
as BP in this mathematical system. BPDE undergo 
hydrolysis process within and outside the cell where 
water is available to form tetrols (BPT). Here tetrols are 
denoted as T� . So,B�  reacts with water to yield T� in 
extracellular medium. In this Model, there is no reaction 
taking place in membranes. When B� and T� come to 
the second compartment (cytoplasm), B� reacts with 
water to yield T� (tetrols), secondly B� reacts with 
glutathione transferees to yield G� (glutathione 
conjugate). Again, B� and T�  come to the perinuclear 
space by diffusing through nuclear envelope and here 

BP undergoes hydrolysis process to yield T� . Lastly, 
when TP and BP reach the nucleus by diffusion where B�reacts with water to yield TP and BP reacts with DNA 
resulting in D� (DNA adduct) thereby engender toxicity, 
tumor or cancer. Thus, our compartmental modeling 
technique provides a tool to investigate the fate of 
carcinogenic compounds in mammalian cells. An index 
is added to distinguish the concentrations between the 
different compartments. For example, we denote BP in 
first compartment (extracellular medium) by B�	. Fig. 1 

demonstrates the compartmental system in and outside 
the mammalian cell. 

 
Fig. 1. Reaction-Diffusion process for four compartments. 

Table 1: Notations and Process representation. 

BPDE (Benzo pyrene diol epoxide) B� 
BPT (Benzo pyrene Tetrol) T� 

GSH Conjugate G� 

DNA Adducts D� 
Diffusion  
Reaction  

 
Set of ordinary differential equations obtained from compartment modeling is given as follows [7, 6, 11, 17, 18]. 
Compartment 1: (Extracellular Medium) 

B�
���� T� 

�
�� B�	 = ��	

�	�,�δ
���
σ�

− B�	� − k�B�	 (1) 

�
�� T�	 = ��	

�	�,�δ
���
σ�

− T�	� + k�B�	  (2) 

Compartment 2: (Cytoplasm) 

B�
���� T� 

B�
� !�� G� 

�
�� B�� = ��	

�"�,�δ
�B�	 − ��

σ�
� + ��"

�"�,�δ
�B�# − ��

σ�
� − ���$� !

σ�
� B��   (3) 

�
�� T�� = ��	

�"�,�δ
�T�	 − ��

σ�
� + ��"

�"�,�δ
�T�# − ��

σ�
� + %

�" ���
σ�

� B��  (4) 

�
�� G�� = � !

σ�
B��  (5) 

Compartment 3: (Perinuclear Space)  

B�
���� T� 

�
�� B�# = ��"

���,�δ
���
σ�

− B�#� + ���
���,�δ

&B�' − B�# ( − k�B�# (6) 

�
�� T�# = ��"

���,�δ
���
σ�

− T�#� + ���
���,�δ

&T�' − T�#( + k�B�# (7) 

Compartment 4: (Nucleus) 

B�
���� T� 

B�
�)*�+� D� �

�� B�' = ���
�,�,�δ

&B�# − B�' ( − &k� + k�*(B�' (8) 

�
�� T�' = ���

�,�,�δ
&T�# − T�'( + k�B�' (9) 
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�
�� D�' = k�*B�' (10) 

Initial Condition B�	 = 10,000; T�	 = B�� = T�� = G�� = B�# = T�# = B�' = T�' = D�' = 0 (11) 

III. BASIC IDEA OF DIFFERENTIAL TRANSFORM METHOD (DTM) 

In this section, we discussed about the basic definitions and operation properties of differential transform method [1, 
4, 9, 14, 15,16]. 
The differential transformation F(k)of a function f(t)is defined as follows: 

F(k) = %
�! 6�78(�)

��7 9�:; (12) 

In above equation f(t) is the original function and F(k) is the transformed function, which is called T-function. Also, 
inverse Differential transform of F(k) is defined as f(t) = ∑ t�F(k)∞�:;  (13) 

Table 2: Some operational properties of DTM. 

Function Differential Transform f(=) = g(=) ± h(t) F(k) = G(k) ± H(k) f(t) = cg(t) , where c is any constant F(k) = cG(k) 

f(t) = dg(t)
dt  F(k) = (k + 1)G(k + 1) 

f(t) = dDg(t)
dtD  F(k) = (k + 1)(k + 2) … . (k + m)G(k + m) 

f(t) = tD F(k) = δ(k − m) = H1, if k = m0, if k ≠ mK 
f(t) = g(t)h(t) F(k) = L H(r)G(k − r)

�

N:;
 

f(t) = eD� F(k) = m�
k!  

f(t) = sin (ωt + α) F(k) = ω
�

k! sin �πk
2 + α� 

f(t) = cos (ωt + α) F(k) = ω
�

k! cos �πk
2 + α� 

IV. THE PADE’ APPROXIMANTS 

Some techniques exist to increase the convergence of given power series. Among them the pade approximants is 
widely applied. 
Suppose we have power series expansion of a function f(t) given by f(t) = ∑ aT∞T:; tT (14) 

Then the Pade approximants to f(t) of order [L, M] which we denote by 6 U
V9W (t) is defined as Eqn. [12] 

6 U
V9W (t) = �X(�)

YZ(�) = [\$[	�$⋯$[X�X
%$^	�$⋯$^Z�Z (15) 

where we considered q; = 1 and the numerator and denominator have no common factors. Construct the numerator 

and denominator in Eqn. (15) so that f(t) and 6 U
V9W (t) and their derivatives agree at t = 0 up to L + M.That is, 

f(t) − 6 U
V9W (t) = O(tU$V$%) (16) 

From Eqn. (16), we get, f(t) ∑ qctcVc:; − ∑ pctcUc:; = O(tU$V$%) (17) 
From Eqn. (17) yield the following set of equations aUq% + ⋯ + aUeV$%qV = −aU$%, aU$%q% + ⋯ aUeV$fqV = −aU$f, ⋮ (18) aU$Ve%q% + ⋯ aUqV = −aU$V, p; = a; p% = a% + a;q% ⋮ (19) pU = aU + aUe%q% + ⋯ + a;qU 
From Eqns. (18) and (19), we calculate all the coefficients qc,  1 ≤ n ≤ M and pc , 0 ≤ n ≤ L. Note that, for a fixed 
value of L+M+1 error Eqn. (17) is smallest when the numerator and denominator of Eqn. (16) have the same degree 
or when the numerator has one degree higher than the denominator. 

V. MODIFIED DIFFERENTIAL TRANSFORM METHOD (MDTM) 

Modified Differential Transform Method (MDTM) is the combination of Differential Transform Method (DTM), Laplace 
Transform and Pade Approximants. This method can be explained as follows: [3, 10, 13, 20] 
(1) Find the power series solution of the given problem by applying DTM. 
(2) Replace s by 1/t in the resulting equation. 
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(3) Convert the transformed series into the meromorphic function by forming its pade approximant of order [L/M]. N 
and M are arbitrarily chosen, but they should be smaller than the order of the power series. In this step, the pade 
approximant extends the domain of truncated series solution to obtain better accuracy and convergence. 
(4) After that, replace t by 1/s. 
(5) Finally, using the inverse Laplace transform we obtain the exact or approximate solution. 

VI. SOLUTION BY MDTM 

By Applying Differential Transform Method to above system of ordinary differential Eqns. (1) to (10) we get following 
system of recursive formula. 
Compartment 1: (Extracellular Medium)  

B�	 (k + 1) = %
(�$%) j ��	

�	�,�δ
���(�)
σ�

− B�	(k)� − k�B�	(k)k (20) 

T�	(k + 1) = %
(�$%) l ��	

�	�,�δ
m��(�)

σ�
− T�	(k)n + k�B�	(k)o (21) 

Compartment 2: (Cytoplasm) 

B�� (k + 1) = %
(�$%) j ��	

�"�,�δ
�B�	(k) − ��(�)

σ�
� + ��"

�"�,�δ
�B�#(k) − ��(�)

σ�
� − ���$� !

σ�
� B�� (k)k (22) 

T��(k + 1) = %
(�$%) j ��	

�"�,�δ
�T�	 (k) − ��(�)

σ�
� + ��"

�"�,�δ
�T�#(k) − ��(�)

σ�
� + %

�" ���
σ�

� B��(k)k (23) 

G��(k + 1) = %
(�$%) j� !

σ�
B�� (k)k (24) 

Compartment 3: (Perinuclear Space) 

B�# (k + 1) = %
(�$%) l ��"

���,�δ
m��(�)

σ�
− B�#(k)n + ���

���,�δ
pB�'(k) − B�# (k)q − k�B�#(k)o (25) 

T�#(k + 1) = %
(�$%) l ��"

���,�δ
m��(�)

σ�
− T�#(k)n + ���

���,�δ
pT�'(k) − T�#(k)q + k�B�#(k)o (26) 

Compartment 4: (Nucleus) 

B�' (k + 1) = %
(�$%) j ���

�,�,�δ
pB�#(k) − B�' (k)q − &k� + k�*(B�'(k)k (27) 

T�'(k + 1) = %
(�$%) j ���

�,�,�δ
pT�# (k) − T�'(k)q + k�B�'(k)k (28) 

D�'(k + 1) = %
(�$%) k�*B�'(k) (29) 

Also, by applying Differential Transform Method to Initial Condition (2.11), we have, B�	 (0) = 10,000;  T�	(0) = B��(0) = T��(0) = G�� (0) = B�# (0) = T�#(0) = B�'(0) = T�'(0) = D�' (0) = 0 (30) 

The Geometry constant and parameter values used in this model are given in Table 3 and 4 [1, 17, 19, 21]. 

Table 3: Geometry constant for Model. 

Constants Value Units 

Volume of extracellular 
Medium (V1) 

663666.67 µm
3

 

Volume of cytoplasm (V2) 2690.9662 µm
3

 

Volume of perinuclear space (V3) 9.033755368 µm
3

 

Volume of nucleus (V4) 3000 µm
3

 

Area of cell membrane (A1) 1005.9235 µm
2

 

Area of nuclear envelope (A2) 222.2385791 µm
2

 

Area of nuclear membrane (A3) 217.8977843 µm
2

 

Table 4: Parameter values used for Model. 

Symbol Constant Value k� T�(Tetrols) formation rate 0.0077 

k�* D�(DNA adduct) formation rate 0.0062 

kr! 
G�(GSH conjugate) formation rate in homogenized 

cytoplasm 
0.242908 

 

k� T�(Tetrols) formation rate in homogenized cytoplasm 
0.005744 

 

D Diffusion in membrane 10
−12 

σ� Scaling Factor for B� 212.4 

σ�  Scaling Factor for T� 31.3 

K[,� Partition Coefficient for BPDE 0.0012 

K[,� Partition Coefficient of BPT 0.0083 

By Taking k = 0,1,2,3,4, ….  in above recursive relation Eqns. (20)-(29) and using initial transform coefficients Eqn. 
(30), we get the following solution of given compartment model, 
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B�	 = 10000 + (−77t) + (0.29645tf) + (−0.000760889t{) + (0.00000146471t|) + (−2.25565 × 10e~)t� +
&2.89476 × 10e12(t6 + &−3.18423 × 10e15(t7 + &3.06482 × 10e18(t8 + &−2.62213 × 10e21(t9 + ⋯   (31) 

TP1
= 0 + 77t + (−0.29645)t2 + (0.000760888)t3 + (−0.00000146471)t4 + &2.25565 × 10e9(t5 + &−2.89476 ×

10e12)t6 + &3.18423 × 10e15(t7 + &−3.06482 × 10e18(t8 + &2.62213 × 10e21(t9 + ⋯ (32) 

BP3
= 0 + 0.00155756t + (−0.00000691553)t2 + &1.81113 × 10e8(t3 + &−3.49709 × 10e11(t4 + &5.38803 × 10e14(t5 +

&−6.91513 × 10e17(t6 + &7.60673 × 10e20(t7 + &−7.32149 × 10e23(t8 + &6.26394 × 10e26(t9 + ⋯ (33) 

TP3
= 0 + (0 × t) + &8.66991 × 10e7(t2 + &−2.22528 × 10e9(t3 + &4.28367 × 10e12(t4 + &−6.59685 × 10e15(t5 +

&8.46596 × 10e18(t6 + &−9.31256 × 10e21(t7 + &8.96334 × 10e24(t8 + &−7.66863 × 10e27(t9 + ⋯ (34) 

GC3
= 0 + (0 × t) + &8.90683 × 10e7(t2 + &−2.63641 × 10e9(t3 + &5.17842 × 10e12(t4 + &−7.99915 × 10e15(t5 +

&1.02704 × 10e17(t6 + &−1.12982 × 10e20(t7 + &1.08747 × 10e23(t8 + &−9.30389 × 10e27(t9 + ⋯ (35) 

BP5
= 0 + (0 × t) + &3.75856 × 10e11(t2 + &−2.07977 × 10e13(t3 + &6.19933 × 10e16(t4 + &−1.29477 × 10e18(t5 +

&2.09939 × 10e21(t6 + &−2.79219 × 10e24(t7 + &3.15346 × 10e27(t8 + &−3.09769 × 10e30(t9 + ⋯ (36) 

TP5
= 0 + (0 × t) + &0 × t2( + &1.10136 × 10e13(t3 + &−4.26743 × 10e16(t4 + &9.95459 × 10e19(t5 + &−1.71409 ×

10e21)t6 + &2.36724 × 10e24(t7 + &−2.7434 × 10e27(t8 + &2.74595 × 10e30(t9 + ⋯ (37) 

BP7
= 0 + (0 × t) + &0 × t2( + &3.79158 × 10e19(t3 + &−2.89111 × 10e21(t4 + &1.17896 × 10e23(t5 + &−3.38433 ×

10e6)t6 + &7.62797 × 10e29(t7 + &−1.43099 × 10e31(t8 + &2.31613 × 10e34(t9 + ⋯ (38) 

TP7
= &8.50353 × 10e22(t4 + &−4.82574 × 10e24(t5 + &1.58559 × 10e26(t6 + &−3.8299 × 10e29(t7 + &7.47139 ×

10e32)t8 + &−1.23763 × 10e34(t9 + ⋯ (39) 

DA7
= &5.87695 × 10e22(t4 + &−3.58497 × 10e24(t5 + &1.21826 × 10e26(t6 + &−2.99755 × 10e29(t7 + &5.91167 ×

10e32)t8 + &−9.85793 × 10e35(t9 + ⋯ (40) 

We apply Laplace Transform to above equations and then for simplicity, substituting� = %
�  in obtained  equations, we 

have following equations, 

L�BP1
� = 10000t + (−77)t2 +  0.5929t3 −  0.00456533t4 +  0.000035153t5 −  &2.70678 × 10e7(t6 + &2.08423 ×

10e9)t7 − &1.60485 × 10e11(t8 + &1.23574 × 10e13(t9 − & 9.51519 × 10e16(t10 + ⋯ (41) 

L�TP1
� = 77.0t2 −  0.5929t3 +  0.00456533t4 − 0.000035153t5 + &2.70678 × 10e7(t6 − &2.08423 × 10e9(t7 +

 &1.60485 × 10e11(t8 −  &1.23574 × 10e13(t9 + &9.51519 × 10e16(t10 + ⋯ (42) 

L�BP3
� = 0.00155756t2 −  0.0000138311t3 + &1.08668 × 10e7(t4 − &8.39302 × 10e10(t5 + &6.46564 × 10e12(t6 −

 &4.97889 × 10e14(t7 +  &3.83379 × 10e16(t8 −  &2.95202 × 10e18(t9 + &2.27306 × 10e20(t10 (43) 

L�TP3
� = 0.00000173398t3 − &1.33517 × 10e8(t4 +  &1.02808 × 10e10(t5 − &7.91622 × 10e13(t6  +  &6.09549 ×

10e15)t7 −  &4.69353 × 10e17(t8 +   &3.61402 × 10e19(t9 − &2.78279 × 10e21(t10 + ⋯ (44) 

L�GC3
� = 0.00000178137 t3 −  &1.58185 × 10e8(t4  +  &1.24282 × 10e10(t5 − &9.59898 × 10e13(t6  + &7.39469 ×

10e15)t7  −  &5.69429 × 10e17(t8 +  &4.38468 × 10e19(t9 − &3.3762 × 10e21(t10 + ⋯ (45) 

L�BP5
� = &7.51712 × 10e11(t3 −  &1.24786 × 10e12(t4 +  &1.48784 × 10e14(t5 − &1.55372 × 10e16(t6  +  &1.51156 ×

10e18)t7 −  &1.40726 × 10e20(t8 +   &1.27148 × 10e22(t9 − &1.12409 × 10e24(t10 + ⋯ (46) 

L�TP5
� =  &6.60816 × 10e13(t4 −  &1.02418 × 10e14(t5 +  &1.19455 × 10e16(t6 −  &1.23414 × 10e18(t7 + &1.19309 ×

10e20)t8 −  &1.10614 × 10e22(t9 +  &9.9645 × 10e25(t10 + ⋯ (47) 

L�BP7
� =  &2.27495 × 10e18(t4 −  &6.93866 × 10e20(t5 +  &1.41475 × 10e21(t6 −  &2.43672 × 10e23(t7  +  &3.8445 ×

10e25)t8 −  &5.76975 × 10e27(t9 +  &8.40477 × 10e29(t10 + ⋯ (48) 

L�TP7
� =  &2.04085 × 10e20(t5 −  &5.79089 × 10e22(t6 + &1.14162 × 10e23(t7 – &1.93027 × 10e25(t8 +  &3.01246 ×

10e27)t9 − &4.49111 × 10e29(t10 + ⋯ (49) 

L�DA7
� =  &1.41047 × 10e20(t5 −  &4.30196 × 10e22(t6 + &8.77147 × 10e24(t7 – &1.51077 × 10e25(t8  +  &2.38359 ×

10e27)t9 − &3.57725 × 10e29(t10 + ⋯ (50) 

The padé approximant [5/5] of all above equations and substituting t = 1

s
  , we obtain [5/5] padé approximant in terms 

of s. Then By using the inverse Laplace transformation, we obtain the following solution of ode system (1) -(10) 
BP1

=
10000exp(−0.0077t) −  exp(−0.000299229t)cos(0.00900918t)(0.000809925 −  0.00156737i) − exp(−0.000299229t)cos(0.00900918t)(0.000809925 +  0.00156737i) + exp(−0.000299229t)sin(0.00900918t)(0.00156737 +  0.000809925i) + exp(−0.000299229t)sin(0.00900918t)(0.00156737 −  0.000809925i) − exp(0.0079761t)cos(0.00764422t)(0.0002313 +  0.00078052i) −  exp(0.0079761t)cos(0.00764422t)(0.0002313 − 0.00078052i) −  exp(0.0079761t)sin(0.00764422t)(0.00078052 −  0.0002313i) − exp(0.0079761t)sin(0.00764422t)(0.00078052 +  0.0002313i) (51) 
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TP1
=

10000exp(2.1682e − 8t) −  0.0183866exp(0.00603802t) −  9999.99exp(−0.0077t) − exp(0.0034971t)cos(0.00765012t)(0.00365881 −  0.000802464i) −
exp(0.0034971t)cos(0.00765012t)(0.00365881 +  0.000802461i) − exp(0.0034971t)sin(0.00765012t)(0.000802464 +  0.00365881i) − exp(0.0034971t)sin(0.00765012t)(0.000802461 −  0.00365881i) (52) 

BP3
= 0.238889exp(−0.00117995t)– &8.83515 × 10e7(exp(0.00185046t) −  0.238888exp(−0.0077t)– & 3.2846 ×

10e7) exp(0.000917071t)cos(0.00607493t) + &2.53559 × 10e7(exp(0.000917071t)sin(0.00607493t) (53) 

TP3
= 8.9272exp(0.0000125764t) − &1.64025 × 10e7( exp(−0.00962079t) − 8.95645 exp(−0.000012608t) +

0.00000335076exp(−0.00649626t) +  0.0292431exp(−0.00770009t) (54) 

GC3
= 0.196086exp p&−5.72413 × 10e8(tq −  0.231569exp(−0.00117989t) +  0.0354822exp(−0.0077t) −

 exp(0.00814453t)cos(0.00560404t)(4.48872e − 9 +  7.22587e − 9i) − exp(0.00814453t)cos(0.00560404t)(4.48872e − 9 −  7.22582e − 9i) − exp(0.00814453t)sin(0.00560404t)(7.22587e − 9 −  4.48872e − 9i) − exp(0.00814453t)sin(0.00560404t)(7.22582e − 9 +  4.48872e − 9i) (55) 
BP5

= 0.00000176294exp(−0.00118029t) −  0.00030069exp(−0.00769089t) +  0.000298927exp(−0.00772929t) +
 exp(0.00603948t)cos(0.00304507t) p&1.01259 × 10e11( − &2.85518 × 10e12(iq +
 exp(0.00603948t)cos(0.00304507t) p&1.01259 × 10e11( − &2.85518 × 10e12(iq −
 exp(0.00603948t)sin(0.00304507t) p&2.85518 × 10e12( + &1.01259 × 10e11(iq −
 exp(0.00603948t)sin(0.00304507t) p&2.85518 × 10e12( − &1.01259 × 10e11(iq (56) 

TP5
= 0.000150346exp(−0.0076709t) −  0.00000456283exp(−0.0015378t) −  0.000147267exp(−0.00774823t) + 0.00000148445exp(0.000593486t)cos(0.000523073t) +  0.00000827334exp(0.000593486t)sin(0.000523073t) (57) 

BP7
=

&4.19729 × 10e12(exp(−0.00118144t) − &4.66825 × 10e12(exp(−0.0139t) + &2.14411 × 10e17(exp(0.00749396t) −
 &4.28405 × 10e10(exp(−0.00764399t) + &4.28876 × 10e10(exp(−0.00777534t)                                                                  (58) 

TP7
=

&1.55433 × 10e11(exp(0.00106261t) − &2.21243 × 10e11(exp(−0.0000684791t) +
 &2.56867 × 10e12(exp(−0.0139067t) +  exp(−0.00773116t)cos(0.000465637t) p&2.00615 × 10e12(  − &5.23047 ×
10e11)iq +  exp(−0.00773116t)cos(0.000465637t) p&2.00615 × 10e12( + &5.23047 × 10e11(iq +
 exp(−0.00773116t)sin(0.000465637t) p&5.23047 × 10e11( +  &2.00615 × 10e12(iq +
 exp(−0.00773116t)sin(0.000465637t) p&5.23047 × 10e11( −  &2.00615 × 10e12(iq (59) 

DA7
=

&1.36565 × 10e11(exp(0.0000262425t) − &2.12789 × 10e11(exp(−0.00121488t) −
 &1.24301 × 10e10(exp(−0.00788489t) +  &2.08353 × 10e12(exp(−0.0138994t) +
 &1.2984 × 10e10(exp(−0.00752735t) (60) 

VII. RESULT AND DISCUSSION 

In this Model we study the formation and degradation of PAH DEs in the different compartment of the cell for 1200 
seconds. Fig. 2 shows the formation and degradation of PAH DEs in extracellular, cytoplasm, perinuclear space and 
nucleus compartment. In this model we find the analytic approximate solution for mammalian V79 cell by considering 
perinuclear space using modified differential transform method. In Fig. 2, BP1

 shows the degradation of BPDE in 

extracellular medium which approaches to zero after 600 seconds, TP1
 shows the formation of BPT in extracellular 

compartment and reaches the steady sate condition after 600 seconds, GC3
 shows the formation of GSH conjugate 

and reaches the steady sate condition after 1200 seconds, DA7
 shows the formation of DNA adduct in the nucleus 

and reaches the steady sate condition after 1200 seconds. 
Comparison of obtained analytical solution by MDTM with DTM and RK4: 
In this Paper, the analytical approximate solution obtained by using MDTM are compared with the numerical solution 
obtained by using Runge Kutta fourth order method and usual DTM for 1200 second. From the Fig. 3, it is clear that 
solution obtained from MDTM is perfectly matched with numerical solution (solution obtained by Runge Kutta fourth 
order), while the obtained solutions from DTM is valid for small values of t. Therefore, we can conclude that the 
solutions obtained by MDTM are more accurate than solutions obtained from DTM. 
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Fig. 2. Formation and Degradation of BPDE, BPT, GSH Conjugate. 

Fig. 3. Comparison of solution obtained by MDTM, DTM and RK fourth order for BPDE, BPT, GSH Conjugate. 

VIII. CONCLUSION AND FUTURE SCOPE 

In this paper, we present Modified Differential Transform 
Method as a combination of Differential Transform, 
Laplace transforms and Pade approximant to study 
compartment-based models of reaction and diffusion 
mechanism of   carcinogenic polycyclic aromatic 
hydrocarbons in mammalian cell including perinuclear 
space. The method has been applied directly without 
requiring linearization, discretization or perturbation. 

Additionally, this Method does not require a perturbation 
parameter to work and it does not generate secular 
terms (noise terms) as other semi analytical methods 
like Homotopy Peturbation Method, Adomian 
Decomposition Method, or Variational Iteration Method. 

Comparison between the solutions obtained by the DTM 
and MDTM with numerical solution (fourth-order Runge-
Kutta) remarked that the accuracy of MDTM is very 
good. 
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MDTM is simple, easy to use, and is readily adaptable 
for computer implementation. So, further research 
should be performed to solve wider class of linear and 
highly nonlinear dynamic models based on ordinary 
differential equations as well as partial differential 
equations. 

ACKNOWLEDGEMENT 

The authors thank referees for fruitful comments and 
suggestions for revising the manuscript.  

Conflict of Interest. The authors declare that there is 
no conflict of interest of any sort on this research.  

REFERENCES 

[1]. Arikoglu, A., & Ozkol, I. (2005). Solution of boundary 
value problems for integro-differential equations by 
using differential transform method. Applied 
Mathematics and Computation, 168(2), 1145-1158. 
[2]. Baker, G. A. (1975). Essentials of Padé 
approximants. academic press. 
[3]. Benhammouda, B., Vazquez-Leal, H., & Sarmiento-
Reyes, A. (2014). Modified reduced differential 
transform method for partial differential-algebraic 
equations. Journal of applied mathematics, 2014. 
[4]. Bert, C. W., & Zeng, H. (2004). Analysis of axial 
vibration of compound bars by differential transformation 
method. Journal of Sound and Vibration, 275(3-5), 641-
647. 
[5]. Chaudhry, Q. A., & Hanke, M. (2014). On the 
numerical approximation of reaction and Diffusion 
Mechanism in a cell: A Non-Standard Compartment 
Model. Pakistan Journal of Science, 66(4). 311-316.  
[6]. Chaudhry, Q. A., Hanke, M., & Morgenstern, R. 
(2009). On the numerical approximation of drug 
diffusion in complex cell geometry. In Proceedings of 
the 7th International Conference on Frontiers of 
Information Technology (p. 17). ACM. 
[7]. Chaudhry, Q. A., Hanke, M., Dreij, K., & 
Morgenstern, R. (2012). Mathematical modeling of 
reaction and diffusion systems in a cell including surface 
reactions on the cytoplasmic membranes. Report 
TRITA-NA-2012:4, KTH Royal Inst. of Technology, 
Stockholm. 
[8]. Chaudhry, Q. A., Morgenstern, R., Hanke, M., & 
Dreij, K. (2012). Influence of biological cell geometry on 
reaction and diffusion simulation. Report TRITA-NA-
2012:2, KTH Royal Inst. of Technology, Stockholm. 
[9]. Chen, S. S. (2004). Application of the differential 
transformation method to a non-linear conservative 

system. Applied Mathematics and Computation, 154(2), 
431-441. 
[10]. Dehghan, M., Hamidi, A., & Shakourifar, M. (2007). 
The solution of coupled Burgers’ equations using 
Adomian–Pade technique. Applied Mathematics and 
Computation, 189(2), 1034-1047. 
[11]. Dreij, K., Chaudhry, Q. A., Jernström, B., Hanke, 
M., & Morgenstern, R. (2012). In silico modeling of 
intracellular diffusion and reaction of benzo [a] pyrene 
diol epoxide. 
[12]. Dreij, K., Chaudhry, Q. A., Jernström, B., 
Morgenstern, R., & Hanke, M. (2011). A method for 
efficient calculation of diffusion and reactions of 
lipophilic compounds in complex cell geometry. PLoS 
One, 6(8), e23128. 
[13]. Ibrahim, S. F. M., & Ismail, S. M. (2013). A new 
modification of the differential transform method for a 
SIRC influenza model. International Journal of 
Computer Applications, 69(19), 8-15. 
[14]. Kuo, B. L., (2004). Thermal boundary-layer 
problems in a semi-infinite flat plate by the differential 
transformation method. Applied Mathematics and 
Computation, 150(2), 303-320. 
[15]. Kuo, B. L. (2005). Heat transfer analysis for the 
Falkner–Skan wedge flow by the differential 
transformation method. International Journal of Heat 
and Mass Transfer, 48(23-24), 5036-5046. 
[16]. Malik, M. O. I. N. U. D. D. I. N., & Allali, M. O. H. A. 
M. E. D. (2000). Characteristic equations of rectangular 
plates by differential transformation. Journal of sound 
and vibration, 233(2), 359-366. 
[17]. Noor, A., Chaudhry, Q. A., Ikhlaq, A., Shuaib, A., & 
Abbas, A. (2015). Compartmental System of Reaction 
and Diffusion Mechanism of Carcinogenic Polycyclic 
Aromatic Hydrocarbons in Mammalian Cell. Journal of 
Faculty of Engineering & Technology, 22(1), 53-62. 
[18]. Patel, Y. (2017). Application of differential 
transform method to compartment modelling, (Ph.d. 
Thesis), SVNIT, Surat, India.  
[19]. Qaiser, M., Chaudhry, Q. A., & Zainab, S. (2015). 
A simplified spherical cell model with the inclusion of 
nuclear envelope for the reaction-diffusion mechanism. 
Science International, 27(2), 1121-1123. 
[20]. Rashidi, M. M., Erfani, E., Bég, O. A., & Ghosh, S. 
K. (2011). Modified Differential Transform Method 
(DTM) simulation of hydromagnetic multi-physical flow 
phenomena from a rotating disk. World Journal of 
Mechanics, 1(05), 217-230. 
[21]. Zainab, S., Chaudhry, Q. A., & Qaiser, M. (2014). 
Inclusion of nuclear envelope in non-spherical cellular 
geometry. space [m], 30, 10-19. 

 
 
 
 

How to cite this article: Patel, K. D. and Joshi,
 
D. C. (2019). Modified Differential Transform Method to Study  

Reaction Diffusion Mechanism of Carcinogenic Polycyclic Aromatic Hydrocarbon In Mammalian Cell Including 
Perinuclear Membrane. International Journal on Emerging Technologies, 10(4): 145–152. 
 


