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ABSTRACT:  There is a tremendous growth in wireless networks and services from the last few years to 
meet various applications which increased the urge of radio spectrum. Organization of the available 
spectrum over unlimited users becomes the challenging task. This paved way for the new technology named 
Cognitive Radio (CR) which provides a promising solution for efficient spectrum utilization. Of all the 
different works of CR, sensing plays a vital role. In this aspect, Compressive sensing, a new paradigm joined 
hands in further improving the efficiency of CR by sampling the wideband spectrum at sub-Nyquist rates. 
Modulated wideband converter is one of the sub-Nyquist sampling technique which supervisions CR 
effectively. In this piece of work, proposed reconstruction algorithm of enhanced simultaneous orthogonal 
matching pursuit algorithm proved its advantages over normal OMP algorithm by extending the iterations 
with a run factor choose between 0 and 1. Simulation results justified the increase of detection probability 
with the proposed algorithm even at low SNR of -10dB. 

Keywords: MWC, spectrum sensing, Orthogonal matching pursuit, support. 

Abbreviations: MWC, modulated wideband converter; OMP, orthogonal matching pursuit; CR,  cognitive radio; ADC, 
analog to digital converter; RF, radio frequency; CTF, continuous to finite; SOMP, simultaneous orthogonal matching 
pursuit; EOMP, enhanced simultaneous orthogonal matching pursuit; MSE, mean square error. 

I. INTRODUCTION 

In the current scenario, there is an extraordinary rise for 
the demand of wireless devices and networks. This 
sudden increase of demand led to various wireless 
applications in all the areas. According to IEEE 
standards, government agencies allotted certain band of 
frequencies fixed to various wireless services. But all 
the time, the allotted fixed spectrum (bands) might be in 
no use. This results in inefficient usage of spectrum. 
Hence less usage and lack of radio spectrum problem 
made the wireless users search for the effective 
solution. Cognitive Radio (CR) is a new technology 
which senses the available radio spectrum intelligently. 
It senses the vacant spectrum and allocates intelligently 
to the secondary users temporarily when it is not being 
used by primary users, thus utilizing the spectrum 
efficiently [1]. If at meantime, the primary users are back 
to use the spectrum, it leaves for the legacy users and 
mobilizes for other vacant band. Thus CR effectively 
utilizes the wireless spectrum. Of all the works of CR, 
sensing plays an important role. The different sensing 
methods include energy detector, Matched filtering, 
Cyclostationary, etc., are narrow band sensing 
techniques [22]. But most of the wireless services 
appear in wideband, these traditional methods become 
complex and gives poor detection performance. As the 
spectrum is wideband, it requires higher sampling rates 
which cannot be affordable even by todays best ADCs 
and also requirement of multiple functional blocks still 
increases the hardware complexity effecting the power 
consumption and speed. To overcome these problems, 
efficient sensing methods are required. Donoho  (2006) 
proposed a new framework named Compressive 

sensing to sense the wideband spectrum which speed 
up the acquisition process and reduces the 
implementation costs [2]. 

 

Fig. 1. Compressive sensing architecture. 

Traditional approach of sampling is done at Nyquist 
rates defined by Shannon. As the spectrum is a wide 
band, the Nyquist sampling is at very high rates which 
cannot be affordable by normal ADCs and the hard 
ware complexity increases. The compressive sensing 
[3] mechanism framed a new era by compressing and 
sensing the signal at a time. In this technique, sampling 
is done at sub-Nyquist rates. As shown in Fig.1, the 

signal of interest is a K-sparse signal ( )x t of length 

1N × is sampled by obtaining the measurement matrix 

of M N× samples, then finding the M measurements 

gives the compressed samples. Finally, various 
reconstruction algorithms help to recover the original 
signal. 
The wideband spectrum considered is a multiband 
signal which spreads at continuous intervals over the 
spectrum [5].  As wideband signal is sparse, sampling 
can be achieved through compressive sensing 
phenomenon. Several techniques are proposed to 
replace conventional ADCs. Landau (1967) proposed a 
sensing method done at low rate sampling with exact 
recovery of the signal [4]. Random demodulator 
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proposed by Tropp (2010) [6] is a single channel 
acquisition scheme. Mishali and Eldar  developed 
modulated wideband converter by modifying random 
demodulator introducing the parallel channel structure 
[7-9]. The main objective of this work is to provide a 
unified framework for sensing wideband spectrum at 
subnyquist rates and also faster recovery. The total 
spectrum is divided into slices and the energy in each 
slice reflects the information of vacant bands. The 
greedy pursuit algorithms provide fast recovery [10-16] 
also suitable for reconstruction in CS technique. Various 
derivatives of OMP [17] like Regularised OMP, 
Stagewise OMP, Adaptive OMP,CoSaMP [21], etc., are 
derived as reconstruction algorithms which proved their 
performance over BP. However, enhanced OMP 
proposed here for MWC has sustained its advantages 
over traditional OMP [19]. In this paper, the advantages 
of subnyquist technique was used by imparting the 
MWC method and in addition implementing the 
proposed enhanced simultaneous orthogonal matching 
pursuit reconstruction algorithm which improves the 
sensing performance. 

II. MATERIALS AND METHODS 

This Let a multiband model of x(t) which has its 
spectrum spread across wide frequency range such that 

( ) 0,
2

= >
NYQ

X f f
f

. It has N bands with a band width B 

Hz each. If Bi is the bandwidth of thi band, then the 

symmetric bands should satisfy ≤iB B . Hence the 

sampling rate is << NYQNB f which indicate that the 

spectrum is not used at all times as shown in Fig. 2.  

 

Fig. 2. An RF transmission system with different 
carriers. 

These frequency bands are said to be in use and the 
remaining spectrum is free called spectrum holes. CR 
detects these spectrum holes and allots to the 
secondary users. An algorithm is needed to detect the 
spectral support and signal reconstruction at faster rates 
with less hardware complexity. Of all the digital 
algorithms proposed, MWC poses greater advantages 
for spectrum sensing. 

A. Wideband Sensing model - MWC 
The architecture of Modulated Wideband Converter 
(MWC) comprises of a group of modulators (mixers) and 
low pass filters. It is multi-channel sub-Nyquist sampling 
scheme consists of m parallel channels. At every 

channel, the input multiband signal ( )x t  is mixed with a 

pseudo-random sequence ( )ip t  given as 
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∞

=−∞

= ∑
j f nt

i n

n

p t C e
pπ

               (1) 

and the coefficients 

           

21

0

1

2

− −

=

 
 =  
 
 

∑
M j nk

M
n ik

k

C e

π

α
π

                               (2) 

It is a periodic sequence of period pT having M number 

of values of [ 1, 1]= + −ikα with frequency ≥pf B . 

Multiplication of pseudorandom sequence with input 
signal is given as 

             ( ) ( ) ( )=m ix t p t x t                                               (3) 

The signals get convolved in frequency domain as 

        ( ) ( ) * ( )=m iX f P f X f                                           (4) 

This process of mixing spreads the spectrum [8] and 

provides pf shifted replicas of X(f). Then low pass 

filtered with cut-off frequency of / 2=c sf f , distributes 

the overlayed energy across baseband. 

 

Fig. 3. Modulated wideband converter architecture. 

After low pass filtering the signal, a low rate sampler is 

used to sample [ ]iy n  at all the channels 0, 1…..m. 

Since there are m channels, the total sampling rate is

= m
s NYQN

mf f . In matrix form written as y = Cz , where 

C is the coefficient matrix and z is the replicated vector 

of input signal.  Its Fourier transform is given as 

( )
0

0

( ) ( ) * ( ) ( )

=−

= = −∑
L

i m n p
n L

Y f X f H f C X f nf H f        (5) 

 B. Continuous-To-Finite (CTF) block 
Active Signal reconstruction takes place in Continuous-
To-Finite (CTF) block which performs support recovery. 
It constructs a basis or frame from the measurements 

such as HVV=Q . The underdetermined system of 

V=AU provides the occupied spectrum information [20]. 

A unique solution to find the support set S is done by 

using any reconstruction algorithm. This complete 
architecture of MWC is depicted in Fig. 3. 
At this point, the CR [22] knows the information of 
vacant bands to allocate secondary users. The support 
set is a column vector having K non-zero indices. If the 

support set S is known, x̂ can be recovered by using a 

submatrix As constructed by columns of A specified by 
vector S. Thus reconstructed signal is obtained as 

  ( )
1

* *
s s sx̂= A A A V

−
                            (6) 

where
*
sA is the Hermitian of sA  
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III. RECONSTRUCTION ALGORITHM 

The performance of CTF block depends on the 
reconstruction algorithm used. A non-linear algorithm is 
required to get the support. There are many algorithms 
like convex iterative algorithms, greedy algorithms and 
Bayesian algorithms. Basis Pursuit is one of the 

standard algorithm which employs 1ℓ  optimization. And 

some algorithms namely Subspace pursuit, 
Compressive sensing matching pursuit utilizes 
backtracking method. Compared to all, greedy 
algorithms are faster iterative algorithms which include 
Matching pursuit, Orthogonal matching pursuit. This 
uses the idea of finding the location of maximum energy 
atom. Moreover there are many derivative algorithms of 
OMP has emerged namely StagewiseOMP, 
RegularizedOMP, StagewiseweakOMP. As these are 
iterative algorithms, the number of measurements 
required is increased for perfect recovery. However 
complexity for reconstructing the signal is very less 

compared with the standard 1ℓ  norm optimization. 

Algorithm 1: Simultaneous Orthogonal 
MatchingPursuit 

Input: A xm L pseudo-random matrix A , × 2m K  

frame vector V  and the number of sub bands K and 

iteration counter t=1. 

Output: Support set Λ which is an1 × 2K vector. 

• Initialize :a null vector φΛ = and the residual     

res = V . 

• Get the projection of residual over the 
measurement matrix and find the maximum 
location of this projection as  

1,2,..
-1maxarg res ,A

=

=
j L

t t j kdλ ,where kd  is the 

norm of diagonal elements of A . 
• obtain the symmetric location and merge  

1−Λ = Λ ∪ ∪t t tsymmt λ λ  

• Least squares problem can be solved to estimate 

the signal as †
x̂ = A V

tΛ
, where ( )† =

T
A A A A

T  

• update the residual as t ˆres = V A xΛ−
t

 and 

2
res resnorm =  

• If t K< and res <norm threshold , go to step 2; else 

terminate. 

• Estimated signal with support set tΛ is calculated. 

A sparse signal can be recovered using greedy 
algorithms. It identifies the support set iteratively. The 
standard greedy algorithm is Othogonal Matching 
Pursuit (OMP) and of course many modifications were 
developed [5] in view of increasing the performance. 

Orthogonal Matching Pursuit recovers K unknown 
values of K -sparse signal. OMP initializes the residual 
with the measurement matrix and selects the best 

(maximum) value from the inner product of A and 
residual. Then updating the residual and repeating to 

find the best values continues until K iterations or the 
residual norm is less than threshold. 

Finally, the location columns act as the support set and 
the corresponding values as reconstructed signal. In 
CTF block, the support set is considered and recovered 
signal is obtained using Eqn. (6). 
In this paper different greedy algorithms are used. The 
Simultaneous Orthogonal Matching Pursuit is same as 
OMP but the inner product is the correlation vector. 

Instead of running k iterations, since the residual may 

not be zero, SOMP is repeated to few more iterations. 
This lead to a derived algorithm-EOMP. 

Algorithm 2: Enhanced Simultaneous Orthogonal  
Matching Pursuit 

Input: A xm L pseudo-random matrix A , x 2m K  

frame vector V  and the number of sub bands K

and iteration counter t=1, enhanced parameter

0,1α   ∈  

Output: Support set Λ which is an1x 2K vector. 

• Initialize:a null vector φΛ = and the residual     

res = V . 

• Get the projection of residual over the 
measurement matrix and find the maximum 
location of this projection as  

1,2,..
-1maxarg res ,A

j L
t t j kdλ

=

= ,where kd  is 

the norm of diagonal elements of A . 
• obtain the symmetric location and merge  

   1t t tsymmt λ λ−Λ = Λ ∪ ∪
 
 

• Least squares problem can be solved to estimate 

the signal as †
x̂ = A V

tΛ
, where ( )† =

T
A A A A

T  

• update the residual as t ˆres = V A x
tΛ−  and 

2
res resnorm =  

• If t k kα< +    and resnorm threshold< , go to 

step 2; else terminate. 

• Estimated signal with support set tΛ is 

calculated. 
 
Assuming an extra run factor α which varies from 0 to 

1, the iterations are modified as = +   t K Kα . The 

pseudo-code of Simultaneous orthogonal matching 
pursuit algorithm is presented in Algorithm 1. 
SOMP is modified form of OMP and achieves faster 
recovery. SOMP may fail in selecting the exact support 
set in K iterations as the residual may not be zero. 
Hence extending the iterations [18] beyond K to get 
correct support lead to enhanced SOMP. Repeat from 
step-2 until the iterations reach the criterion

t K Kα= +    , where K is the sparsity of the signal and 

0,1  ∈α is the extended run factor which is described 

in Algorithm 2. This may increase the computational 

complexity but still within the factor of 1 α+ . 

Thus by extending the iterations, enhanced SOMP 
improved the chance of finding the correct atoms. When 

0α = leads to the standard OMP performance. 
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Prior knowledge of sparsity is the only drawback of 
OMP even though its performance is superior to all 
other greedy algorithms. When the restriction on 
iterations is removed, then knowledge of sparsity is not 
necessary. Another modified OMP was proposed by 
continuing the iterations until residue becomes zero. 

IV. SIMULATION  RESULTS 

To compare the performances of EOMP and OMP 
algorithms, 500 monte-carlo simulations were done for 

each algorithm. A multiband signal ( )x t is considered 

which has 3 frequency bands i.e., 02 6N N= = , each 

has a bandwidth of 50 MHz. Since it is a wideband 

signal, its sampling frequency is around 10GHz . This 

signal is applied to MWC with 100 parallel channels and 

modulated with a carrier frequency of [ ]0 5 GHz− and 

the spectrum occupancy 300 MHz=NB , thus

NYQNB f<< . Aliasing rate taken is 195 whereby the 

sampling frequency sf  which is 

equal to pf , the rate of pseudo-random generator is 

given by /195 51.3 MHz=NYQf .With this parameter 

setting; the spectral support can be recovered by using 
both SOMP and enhanced OMP reconstruction 
algorithms as shown in Figs. 4 and 5. The multiband 
spectrum with carrier frequency 

[3 4GHz,3.1 4GHz,1.4 GHz]=if  was recovered which 

indicates the occupied spectrum and remaining 
spectrum is vacant. 

 

Fig. 4. Spectrum of Original, noised and reconstructed signals using SOMP algorithm. 

 

Fig. 5. Spectrum of Original, noised and reconstructed signals using Enhanced SOMP algorithm. 
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Fig. 6. Percentage of Support recovery vs SNR. 

As depicted if Fig. 6, there is an improvement in the 
support recovery as the number of bands are increasing 
with enhanced OMP compared to SOMP. This makes 
CR to identify the active bands and allot to the 
secondary users. 
The Normalized Residual of EOMP is lower than OMP 
as SNR is increasing. In the OMP and SOMP algorithm, 
the number of iterations depends on the sparsity. Some 
of the atoms may not be converged. EOMP runs the 
iterations still further to reduce the residue which is as 
depicted in Fig. 7. 

 

Fig. 7. Normalised Residual vs SNR. 

Performance analysis of these algorithms was done by 
another metric named mean square error which is given 
by Eqn. 4. Also the benefits of MSE are maintained in 
various SNRs shown in Fig. 8. Better MSE performance 
is achieved for all algorithms by increasing SNR  

 Normalized 2

2

ˆ−
=

x x

x
MSE                             (7)  

 

Fig. 8. Reconstruction Probability vs SNR for Enhanced 
SOMP with different values of run factor α. 

Monte Carlo simulation for 100 trials was done to 
compare the performance of these algorithms. Better 
MSE performance is achieved for all algorithms at 
increasing SNR. We use M=195, m=50 channels and 
SNR is varied from 5 dB to 20 dB. 

 

Fig. 9. Recovery Run time vs SNR for m=50 channels 
and N=6. 

The performance for SOMP with 
4

5.95 10MSE
−≈ is 

almost equal for Enhanced OMP with 
4

6.85 10MSE
−≈

and compared with standard OMP with 
3

0.31 10MSE
−≈ at SNR of 20 dB. Fig. 8 depicts the 

enhanced SOMP for different values of [0,1]α = . Fig. 9 

shows the runtime of enhanced SOMP is vastly 
improved with that of standard OMP.  
The results shown in Fig. 10 depicts the probability of 
successfully recovering the support at various number 
of channels. At each channel periodic mixing of random 

sequence with input signal ( )x t  was applied. The 

recovery support reaches at least 90% at SNR above 
10dB and  minimum 30 channels of usage. Also still the 
improvement is high with enhanced SOMP algorithm. 
As from the simulations, Fig. 11 shows the improvement 
of enhanced OMP since the iterations are increased. 
Success recovery is improved even at low SNR. Thus 
MWC improved the sensing capabilities of cognitive 
radio by sensing the spectrum at faster rates.  

 

Fig. 10. Reconstruction Probability at varying channels 
for OMP and its derived algorithms when SNR =5 dB, 

10 dB, 15 dB. 
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Fig. 11. Reconstruction Probability at different SNR for 
OMP and its derived algorithms when N=4 and N=6. 

V. CONCLUSION 

In this work, sub-Nyquist sampling of wide band 
spectrum using MWC architecture was considered. 
Greedy algorithms are advantageous in terms of 
computational costs. To increase the performance, 
instead of OMP, its derivative algorithms were used. 
The simulation results proved the improvement of 
reconstruction probability using enhanced OMP at an 
increase of the bands. In addition, the improved 
algorithm also suitable at low SNRs. Further, the 
proposed algorithms identify the correct support at 
increase in number of iterations and also no knowledge 
of sparsity is required. Thus reconstruction with 
enhanced SOMP outperforms the conventional MWCs. 
Also the benefits of MSE are maintained at various 
SNRs. 

VI. FUTURE SCOPE 

As the wireless services are increasing, the MWC used 
for spectrum sensing can be improved interms of 
hardware costs. 
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