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ABSTRACT:  Business processes leave behind trails of their execution histories and present-day information 
systems record these trails in event logs. Process mining helps analysts to have a better insight into these 
processes by exploiting these event logs. Out of several process mining operations, process discovery is 
the prominent and most widely researched topic. A process discovery method produces a business process 
model by correlating events available in an event log. Numerous process discovery techniques have been 
presented in recent years focusing on issues like the complexity of the generated model, accuracy, and 
scalability. However, most of these methods incorporate algorithms that are computationally complex and 
rely on case identifiers to establish the correlation between the events available in an event log to produce a 
process model. Hence, it becomes important to explore the availability of methods that (i) increase the 
execution efficiency of the computationally complex process discovery algorithms and (ii) discover process 
model in the absence of case identifiers. This article not only presents a meticulous review of the methods 
available for the above-said problems but also highlights the gaps and unexplored facets. There are other 
review articles available in the domain of process mining, but they do not explicitly focus on the above-said 
problem statements. 
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Abbreviations: BPMN, Business Process Model Network; caseid, case identifier; FHM, Flexible Heuristic Miner; IT, 
Information Technology; ILP, Integer Linear Programming; IoT,  Internet of Things. 

I. INTRODUCTION 

Modern business processes are event-driven and they 
rely on information systems to carry out these events. 
The execution trails of these processes are maintained 
by information systems in event logs [62]. Process 
mining techniques not only enable analysts to get a 
better view of a process but also help the analysts to do 
an in-depth performance analysis of a business process 
by using event logs. Thus, event logs play an important 
role in process mining to derive significant inferences.  
An event log is a collection of traces of process 
instances and each trace is an ordered sequence of 
events related to a particular case.  
The rudimentary step involved in process mining is 
process discovery from event logs and representing the 
discovered process in a graphical form. A process 
discovery approach uses an event log as input to 
produce a process model that represents the control 
flow relations existing between events (or activities) in 
the same event log. The effectiveness of such a 
discovered process model is measured through the 
accuracy of reflecting the behavior captured in the event 
log. The discovered process model must not be 
complex. Also, it should have high fitness, 
generalization, and precision value [61]. 
The challenge of discovering process models from 
event logs is not new. Many researchers have proposed 
their unique approaches to tackle this challenge or 
factors affecting this challenge in the past twenty years.  

While a healthy number of proposals are available to 
deal with the challenge of process discovery, most of 
them rely on event logs having case identifiers (caseid). 
It becomes pretty easier to correlate events (or 
activities) belonging to a process trace in the presence 
of caseids. But, in the absence of caseid's the challenge 
of process discovery becomes hard to crack. Also, most 
of the state-of-the-art process discovery techniques are 
complex and include computation-intensive steps. As 
modern-day business organizations produce a 
voluminous amount of data, the event log size increases 
exponentially. This results in longer execution times of 
the state-of-the-art process discovery techniques. Thus, 
it becomes important to explore and review the 
techniques available for (i) discovering process models 
that do not rely on caseid's and (ii) increasing the run-
time efficiency of process discovery algorithms. This 
paper aims at presenting a meticulous depiction of the 
above-said facts.  
The remaining portions of the paper are organized as 
follows. Section II presents the formulation of the 
searching mechanism for the review process. Section III 
describes the methods available for process discovery 
in the presence of caseids and the absence of caseids 
respectively. Then, the methods which either increase 
scalability or run-time efficiency of process discovery 
algorithms are described in Section IV. Section V 
presents the discussionon the overall findings followed 
by Section VI which concludes the paper and sketches 
future work directions. 
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II. FORMULATING THE SEARCH MECHANISM 

To gather the information regarding research done in 
the field of process discovery, we listed out a set of 
search strings based on a set of research questions. 
These search strings were executed on different 
sources of data. Further, we enforced some criteria for 
selecting the studies retrieved through the search to be 
included in the review process. 

A. Research Questions 
Since the progress made in the field of process mining 
is now two decades old and many methods are 
available for process discovery, the objective of this 
literature review is to accumulate all the methods 
available for process discovery, segregate and analyze 
the methods that can discover process model from an 
unlabeled event log, and list out any such framework 
that can increase the execution efficiency of process 
discovery methods. Specifically, our search criteria for 
the literature review is based on the following three 
research questions: 
[Q1]  What are the methods available for process 
discovery? 
[Q2] How to discover process models in case of 
unlabeled event logs and is there any method available 
for the same? 
[Q3] How to enhance the execution performance of the 
process discovery methods? 

B. Forming the search strings and selection of studies to 
be included 
The core of our search revolves around Q1 (which also 
includes the proposals targeting Q2) mentioned in the 
previous section, which aims at tracing out present 
methods available for process discovery. To achieve 
this, we considered the following search strings: 
“process discovery”, “process discovery in process 
mining”, “process discovery and process mining”, 
“discovering process models”, “workflow modeling”, 
“workflow discovery”, and “discovering process models”. 
We used Google Scholar for searching documents 
having either of these search strings. Specifically, we 
retrieved those documents which contained either of 
these search strings in their title or abstract or 
keywords. Further, we considered only those 
documents which purely proposed a new method to 
discover process model and discarded all the other 
documents which have proposals on noise reduction or 
conformance checking in process mining [64]. The 
studies which target Q3 mentioned in Subsection A are 
also filtered out from the above-mentioned search 
results. The entire process of searching was over by 
December 2019. 

III. PROCESS DISCOVERY METHODS 

Given an event log, discovering a process model from 
that event log is the primary task in process mining. 
Process discovery methods are based on machine 
learning and data mining techniques. The description of 
several process discovery algorithms along with their 
respective notations is presented in the following 
section. 

 

A. Process discovery in the presence of caseid 
An important attribute that helps in correlating different 
events or activities belonging to a particular process 
instance in an event log is caseid. Within an event log, 
several caseids might be present, but these must be 
unique to correlate the events or activities that are 
executed within a process instance. The majority of the 
process discovery techniques rely on caseid or an 
attribute that is very similar to a caseid in an event log to 
discover process models. We have retrieved and 
summarized all such techniques or methods that rely on 
caseid for process discovery below. 
Agrawal et al., proposed a method to discover process 
models from unstructured execution of processes. They 
applied this technique to workflow management 
systems. The application of this technique on synthetic 
data displayed successful evaluation and evolution of 
existing processes [2]. 
Cook and Wolf developed a data analysis technique and 
named it to process discovery where they were able to 
discover models from event-based data. Specifically, 
they developed RNet, Ktail, and Markov methods to 
discover models in the context of software engineering. 
They used statistical, algorithmic, and probabilistic 
approaches to develop these methods [13]. 
Datta proposed the B-F (k,c) algorithm to automatically 
extract AS-IS process models in the domain of Business 
Process Reengineering (BPR) and Workflow 
Management. This algorithmic approach was based on 
statistics and probability theory [14]. 
A technique to learn two-component mixture models of 
global partial orders was proposed by Manilla and Meek 
[44]. The technique was able to provide an 
understandable, global view of a set of event 
sequences. But, the technique lacked many other 
typical problems like concurrency in the field of process 
mining. The data mining techniques utilized and 
proposed a tool named as Process Miner. Process 
Miner was able to discover exact workflow models from 
event-based data. But, Process Miner was not robust 
enough to be applied in a real-life setting [56, 57].  
Van Der Aalst et al., [62] proposed an algorithm to 
discover a process model from a workflow log. They 
named it α algorithm. The α algorithm was able to mine 
any workflow represented by a so-called structured 
workflow net. However, this algorithm was incapable of 
discovering any arbitrary workflow process as they 
might have loops. An enhancement over the existing α 
algorithm was proposed by de Medeiros et al., [3] which 
was able to overcome the problem of short loops. The 
authors proposed the α

+
-algorithm which was able to 

correctly mine sound structured workflow nets and 
handle short loops of length one and two. The α

+
-

algorithm was implemented in the EMiT tool. Herbst & 
Karagiannis described the splitpar algorithm, which is 
part of the InWoLvE framework for process analysis.  
This algorithm was based on deriving a so-called 
stochastic activity graph and converting it into 
astructured process model. The splitpar algorithm was 
at par with detecting duplicate activities, but it was 
incapable of discovering non-local dependencies [32]. 
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vanDongen and van der Aalst presented a process 
discovery method by aggregating process models 
obtained from individual procinstances into a Petri net. 
The intermediate steps in this method were derived by 
using Event-driven Process Chains (EPCs) [67]. 
Another process discovery alg ess orithm named 
Workflow Miner was proposed by Gaaloul et al., The 
elementary dependencies in an event log were modeled 
through intermediary graphical representations and then 
the final advanced structural workflow patterns were 
modeled in this technique [24]. 
Weijter et al., proposed a heuristic-based algorithm to 
discover a process model from an event log in the 
process mining domain [77]. The algorithm was named 
as "HeuristicsMiner" and was able to deal with noise. 
HeuristicsMiner can express the main behavior 
recorded in an event log. However, it was unable to 
represent exceptions present in an event log. 
Greco et al., proposed a machine learning theory-based 
approach in [29] and called this technique as DWS 
mining. Based on a hierarchical and iterative procedure, 
DWS mining was able to refine the process model in 
each step as the process model was generated by 
applying a clustering technique on patterns having 
similar behavior. This approach not only guaranteed full 
compliance with the event log but also displayed 
incremental improvement on the soundness property of 
the process model. 
An induction rule-based approach to predict the causal 
dependency between activities from a set of event logs 
having different levels of noise and imbalance was 
proposed by Mặruşter et al., [45]. Specifically, a 
propositional rule induction technique was used to 
deduce the relations in a preprocessing step. 
A combined approach of ILP learning and partial-order 
planning was proposed by Ferreira and Ferreira to 
discover process models. By repetitive combined 
execution of planning and learning, a process model 
was discovered. The model was represented based on 
the case data preconditions and effects of its activities 
[22]. 
A genetic algorithm-based method was proposed to 
extract the process model from an event log [15]. The 
method was successful in dealing the problems like 
non-trivial constructs and/or noise present in the log. 
Rather than relying on local information, this genetic 
algorithm approach used global search techniques to 
handle these problems. Experiments were carried out 
using synthetic and real-life logs to show that the fitness 
measure is complete and precise. The genetic algorithm 
was embedded in the ProM framework as a plug-in. 
Petri net-based discovery methods show their limited 
capabilities in learning accurate and comprehensible 
models while dealing with real-world event logs which 
are highly complex. To overcome such a problem, 
alternative discovery technique such as the FuzzyMiner 
was proposed [30]. This technique was more effective 
as this technique featured better abstraction capabilities. 
Wen et al., developed methods to mine non-free-choice 
constructs as most of the real-life processes display the 
said behavior. Using Petri-net-based representation, 
they were able to show two types of causal 
dependencies between tasks namely implicit and 
explicit. An algorithm that can deal with these 

dependencies and also, implemented that algorithm in 
the ProM Framework. An improvement over the original 
α algorithm was proposed where they take advantage of 
both starts and completed event types to detect 
concurrency. They named their algorithm as the β-
algorithm [78]. 
Lamma et al., described the use of ILP to process 
mining. The search algorithm was guided by the 
presence of negative sequences in this method. The 
use of partial-order planning was avoided in this method 
whilepresentinga userwith an execution plan to accept 
or reject. Hence, the root of the negative events was not 
answered immediately in this approach [35]. 
Greco et al., proposed AWS mining, an enhancement 
over the preexistingprocess discovery techniques by 
imposing an abstraction-based method that targeted 
classification of process models [27]. The method was 
capable of analyzing different behavior present in an 
event log in details. A mining algorithmwas combined 
withan abstraction-based algorithmin this technique to 
produce a tree-like schema finally. The non-leaf nodes 
in this tree-like structure represented an abstract 
process model that further generalized to represent all 
the different process models in the respective subtree. 
Goedertier et al., proposed AGNEsMiner which 
addressed the task of process discovery with the help of 
first-order classification learning. The event logs were 
infused with artificially generated negative events 
(AGNEs). The final output of AGNEsMiner was a Petri 
net modelrepresenting a process. It was possible to 
distinguish between the occurrence of either a positive 
or a negative event from an event log that has been 
infused with artificially generated negative events 
through this method. The entire process mining task 
was based on a classification learning problem. The 
algorithm was designed in such a way that it can learn 
the distinguishing conditions that deduce whether an 
event can happen or not, given an execution history of 
events of other activities [25]. 
An enhanced version of the WFMiner was proposed. 
This enhanced algorithmic technique was capable of 
dealing with many important process discovery 
challenges like noise, duplicate tasks, and non-free 
choice [23]. 
A method based on Integer Linear Programming (ILP) to 
discover process models from an event log was 
proposed. This ILP based method was formerly known 
as the Parikh language-based region miner which has 
been derived by using the concepts from the language-
based theory of regions an area that belongs to the Petri 
net domain. The authors claimed that this technique to 
be useful as this approach allowed for parallelization 
and was independent of the number of events 
registered in the event log [65]. 
To have a balanced trade-off between precise and 
general process model, a new process discovery 
technique called FSMMiner/Petrify was proposed. The 
idea was to represent mined process models through 
different views at different levels of abstraction. It was a 
two-step approach where in the first step, a transition 
system should be constructed from the traces in an 
event log. The second step involved synthesizing this 
transition system employing the theory of regions and 
finally, a Petri net was constructed [52, 63]. 
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Carmona et al., described Genet. This technique was 
very similar to FSMMiner/Petrify and was able to 
produce a Petri net from a transition system [11]. 
To represent the semantics of splits and joins in an 
event log, a new representation language, and the 
respective algorithm has been proposed in [76]. The 
method is based on asplit/join frequency table and 
named Flexible Heuristic Miner. The proposed algorithm 
was implemented as a plug-in in the ProM framework 
and was able to produce easy to understand process 
models in the case of non-trivial constructs, low 
structured domains, and the presence of noise. 
The very first basic approach to mine declarative 
process models was proposed [41]. The authors used 
Declare constraints [49, 80] to extract these models. 
An algorithm to extract block-structured Petri nets from 
event logs was proposed [33]. In a two-step approach, 
the algorithm first develops an adjacency matrix 
between all pairs of tasks and then extracts block-
structured models consisting of primary sequence, 
parallel, choice, optional, loop, and self-loop structures 
by analyzing the available information. The method was 
developed as a standalone tool and named as HK. 
The process discovery method that returns causal nets 
was proposed by Greco et al., [28, 26]. A causal net is 
built by capturing the causal relations between activities 
in an event log. The causal relations are gathered from 
an event log and encoded in this method. The required 
background knowledge is captured in terms of 
precedence constraints of the resulting model topology 
and then the algorithm is formulated based on 
reasoning problems over these precedence constraints. 
A two-phase approach to discover Declare constraints 
and named it MINERful [18]. In the first phase of this 
approach, the occurrences of activities and their 
interplay in the event log were computed. The second 
phase dealt with checking the validity of Declare 
constraints by querying the knowledge base created 
with the previous statistical data structure. 
The Inductive Miner was proposed which was based on 
the extraction of process trees from an event log [37]. 
The proposed technique ensured soundness while 
dealing with infrequent behavior and large event logs 
during process discovery. The technique has been 
implemented in ProM. An extension of this work where 
modeling of cancellation behavior is supported has been 
published [36]. 
To discover Declare constraints along with semantics 
that considers data conditions was first presented [40]. 
The authors used first-order temporal logic to derive the 
data-aware semantics of Declare. 
The Proximity Miner presented  is another method that 
produces causal nets. In this method, the behavioral 
relations between the events in an event log are first 
extracted and then these are enhanced by using inputs 
from domain experts [82, 81]. 
A runtime monitoring framework to do log analysis was 
developed [1]. The framework was capable of extracting 
process instances and trace out appropriate metrics 
simultaneously in a single pass through the event logs. 
Further, these metrics were used to select traces with 
certain characteristics to be used for the discovery of 
process models. The authors took the help of directly-
follows graphs to express process models. 

Another approach for the discovery of Declare 
constraints has been presented. Also present the 
Evolutionary Declare Miner that implements 
thediscovery task using a genetic algorithm [72]. 
The Evolutionary Tree Miner was introduced. This was a 
genetic algorithm-based method that enables the user 
to discover process based on four quality preferences 
namely: fitness, precision, generalization, and 
complexity [8, 9]. 
To discover Petri nets from large event logs, numerical 
abstract domains were used [10]. The formal properties 
of the discovered models were guaranteed in this 
approach. Also, the method ensured that the discovered 
Petri nets can reproduce every trace in the log which 
minimally describes the log behavior. 
Ferilli proposed the WoMan framework [20] which 
included learning and refining process models from an 
event log by discovering first-order logic constraints. 
The method ensured incremental learning and adapting 
the models along with the ability to showcase triggers 
and conditions on the process tasks and efficiency. 
Maggi et al., presented the Hybrid Miner [42] which can 
produce a hybrid process model from an event log. A 
hybrid process model was a hierarchical model 
consisting of several nodes and each node represents a 
sub-process. Further, each sub-process was specified 
in a declarative or procedural way. To represent 
procedural sub-processes Petri nets were used, 
whereas to represent declarative sub-processes 
Declare were used. 
A divide-and-conquer algorithm-based process 
discovery method known as the Constructs Competition 
Miner (CCM) was proposed [51]. The method was able 
to discover block-structured processes from event logs 
which might be having exceptional behavior. 
To extract directed acyclic graphs from event logs 
based on probabilistic models was proposed [73]. The 
method extensively used the Bayesian belief network 
which is one of the most common probabilistic models. 
The authors of the work proposed an approach for the 
discovery of hybrid models named as Fusion Miner. 
Fusion Minor was based on the semantics devoted to 
obtaining a fully mixed language, where procedural and 
declarative constructs can be connected [16]. 
DGEM proposed  was a method to discover BPMN 
models. In the first step of this two-step approach, a 
hierarchical view on process models was formally 
specified. In the second step, an evolution strategy was 
applied to it. The evolution strategy was driven by the 
diversity of the process model population. The method 
was very effective in finding the process models that 
best represent a given event log [47]. 
Non-free-choice construct and invisible tasks are two 
critical structures that need to be dealt with in a process 
model. The challenge of mining invisible tasks involved 
in non-free-choice constructs was proposed in an 
algorithm named α

$ 
[31]. The problem was solved in α

$
 

by introducing new ordering relations. The α
$
 was able 

to significantly improve the existing process mining 
techniques and was implemented as a plug-in of ProM. 
Liesaputra et al., proposed the Maximal Pattern Mining 
(MPM) technique to discover process models from 
event logs. The method was based on capturing 
patterns of event sequences in an event log and from 
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these patterns a process model was generated which 
were represented through causal nets. This MPM 
technique was able to handle loops (of any length), 
duplicate tasks, non-free choice constructs, and long-
distance dependencies. 
Vazquez et al., proposed ProDiGen [74] where they 
addressed the problem of process discovery through a 
genetic algorithm. The method used a new fitness 
function that considered completeness, precision and 
simplicity, and specific crossover and mutation 
operators. The discovered models were represented 
through causal nets. 
Declarative process models consider activities of a 
business process to be atomic/instantaneous events. 
But, this is not always true as in realistic environments, 
process activities may not be instantaneous but would 
have executed over a time interval and passed through 
a sequence of states of a lifecycle. The method 
proposed described a discriminative rule mining 
approach to enable the existing declarative process 
discovery techniques to analyze business processes 
having non-atomic activities [6]. 
 The theory of grammatical inference was used to 
generate Petri nets for process discovery. This was a 
standalone application and named as RegPFA [7]. 
Conforti et al., proposed the BPMN Miner [12]. This was 
an automated discovery method that produced BPMN 
models. The generated models contained sub-
processes, activity markers like multi-instance and loops 
along with interrupting and non-interrupting boundary 
events that could handle exception handling. 
The authors in their work proposed the CSM Miner. The 
CSM Miner was able to discover state machines from 
event logs. This method focused onthe states of the 
different process perspectives and discovered the 
relations among them instead of concentrating on the 
events or activities that were executed in a particular 
process. These relations were expressed as Composite 
State Machines. The CSM Miner was also able to 
provide an interactive visualization of these multi-
perspective state-based models [68]. 
Li et al., proposed a process mining algorithm named as 

τ. This method leveraged data carried by tokens during 

the execution of a business process and tracked the 
state changes in the so-called token logs. This 
information used to improve the mining efficiency and 
mining capability of standard process discovery 
algorithms [38]. 
The algorithms to extract the control flow, as well as 
relevant data parameters from a given event log, has 
been presented [46]. The authors also showed that how 
conditional partial order graphs can be used to visualize 
the obtained results from an event log. The method was 
called as PGminer and implemented as a Workcraft 
plug-in as a standalone application. 
A mining approach that takes the help of standard SQL 
for querying the log to directly work on relational event 
data was introduced [58]. The mining procedure 
became fast as the detection of certain control-flow 
constraints was removed and database performance 
technology was incorporated. Also, customization of 
queries was possible and process perspectives were 
covered beyond control flow. 

The method presented  emphasized that activities 
without any dependencies in an event log can be 
executed in parallel. Hence, this method was able to 
discover process models with concurrency without 
caring about the completeness criteria of the logs. A tool 
named ProM-D was developed with this method [59]. 
To discover sound workflow nets from incomplete event 
logs is a challenging task. An approach to tackle this 
challenge was introduced [60]. The activities which infer 
the behaviors not exhibited in the log were identified 
through the concept of invariant occurrence. The set of 
such activities was named conjoint occurrence classes 
and the proposed method was based on this concept. 
Augusto et al., proposed a discovery method that 
combined the following two: (i) a technique to filter the 
directly-follows graph induced by an event log, (ii) with 
an approach to identify combinations of split gateways 
that accurately capture the concurrency, conflict and 
causal relations between neighbors in the directly-
follows graph. The proposed method was able to 
produce simple process models with low branching 
complexity. Also, the produced models were having 
consistently high and balanced fitness, precision, and 
generalization [4]. 
vandenBroucke & De Weerdt presented Fodina, a 
heuristic-based process discovery technique with a 
strong focus on robustness and flexibility. The authors 
were able to identify several drawbacks that impact the 
reliability of previously existing heuristic-based process 
discovery techniques. The proposed algorithm has 
better performance in terms of process model quality, 
adds the ability to mine duplicate tasks, and allows for 
flexible configuration options [71]. 
A method to discover causal nets that optimizes the 
scalability and interpretability of the outputs was 
proposed [48]. The process that needs to be analyzed 
was decomposed into set independent stages so that 
each stage can be mined separately. With the above 
implementation, the technique was able to maximize 
modularity by discovering a stage decomposition. 
Verbeek et al., proposed a generic divide-and-conquer 
approach to discover process models from very large 
event logs [75]. The approach was based on partitioning 
the event log into several smaller logs and discovering a 
model from each of those smaller logs. Then all the 
models discovered from those sublogs were assembled 
to form the final model. This method was able to reduce 
overall complexity and produce high-quality models. 
Often process discovery methods filter out infrequent 
paths and activities from an event log by treating them 
as noise. However, sometimes, removing this infrequent 
behavior may lead to a loss of significant insights into 
the process. Hence, not all infrequent behavior should 
be considered as noise. Mannhardt et al., proposed a 
Data-aware Heuristic Miner (DHM) [43]. This process 
discovery method was able to distinguish between 
infrequent paths and random noise by using 
classification techniques based on data attributes. Both 
data- and control-flow of the process were discovered 
by using this technique. The applicability of the DHM 
was evaluated on several real-life event logs. 
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Table 1: Overview of different process discovery techniques in the presence of caseid. 

S. No. Method Contributor(s) Year 

1. General DAG Agrawal et al., [2] 1998 
2. B-F(k,c)-algorithm Datta [14] 1998 

3. Rnet, Ktail, Markov Cook and Wolf [13] 1998 
4. Global partial orders Manilla and Meek [44] 2000 

5. Process Miner Schimm [56] 2002 
6. α / α

+
 van der Aalst et al., [62], [3] 2004 

7. InWoLvE—splitpar Herbst and Karagiannis [32] 2004 

8. Multi-phase Miner van Dongen and van der Aalst [67] 2005 
9. Workflow Miner Gaaloul et al., [24] 2005 

10. HeuristicsMiner Weijters et al., [77] 2006 
11. DWS Mining Greco et al. [29] 2006 
12. Rule-based approach Mặruşter et al. [45] 2006 

13. ILP-partial order Ferreira and Ferreira [22] 2006 
14. Genetic Miner Alves de Medeiros et al. [15] 2007 

15. Fuzzy Miner Günther and van der Aalst [30] 2007 
16. α

++
 Wen et al., [78] 2007 

17. DecMiner Lamma et al., [35] 2007 

18. AWS Mining Greco et al., [27] 2008 
19. AGNEsMiner Goedertier et al., [25] 2009 

20. β (or Tshinguaα) Wen et al., [79] 2009 
21. Enhanced WFMiner Folino et al., [23] 2009 

22. ILP Miner(Parikh)  Werf et al.,  [65] 2009 
23. FSM Miner/Petrify van der Aalst et al.,[63] 2010 
24. FSM Miner/Genet Carmona et al.,  [11] 2010 

25. Aim Carmona, Cortadella [10] 2010 
26. Flexible Heuristic Miner Weijters et al., [76] 2011 

27. Declare Miner Maggi et al., [41] 2011 
28. HK Huang and Kumar [33] 2012 
29. CNMining Greco et al., [28] 2012 

30. MINERful Di Ciccio and Mecella [18] 2013 
31. Inductive Miner - Infrequent Leemans et al., [37] 2013 

32. Data-aware Declare Miner Maggi et al., [40] 2013 
33. Proximity Miner Yahya et al., [81] 2013 

34. WoMan Ferilli [20] 2013 
35. Process Skeletonization Abe and Kudo [1] 2014 
36. Evolutionary Declare Miner vandenBroucke et al. [72] 2014 

37. Evolutionary Tree Miner Buijs et al., [8, 9] 2014 
38. Hybrid Miner Maggi et al., [42] 2014 

39. Competition Miner Redlich et al., [51] 2014 
40. Directed Acyclic Graphs Vasilecas et al., [73] 2014 
41. Fusion Miner De Smedt et al., [16] 2015 

42. DGEM Molka et al., [47] 2015 
43. ProDiGen Vazquez et al.,[74] 2015 

44. ProM-D Song et al., [59] 2015 
45. α

$
 Guo et al., [31] 2016 

46. Maximal Pattern Mining Liesaputra et al., [39] 2016 

47. Non-Atomic Declare Miner Bernardi et al., [6] 2016 
48. RegPFA Breuker et al., [7] 2016 

49. BPMN Miner Conforti et al., [12] 2016 
50. CSMMiner van Eck et al., [69] 2016 

51. τ miner Li et al., [38] 2016 

52. PGminer Mokhov et al., [46] 2016 
53. SQLMiner Schönig et al., [58] 2016 
54. CoMiner Tapia-Flores et al., [60] 2016 

55. Split miner Augusto et al., [4] 2017 
56. Fodina vandenBroucke et al., [71] 2017 

57. Stage miner Nguyen et al., [48] 2017 
58. Decomposed Process Miner Verbeek, van der Aalst [75] 2017 
59. Data-aware Heuristic Miner Mannhardt et al., [43] 2017 

60. Discover and Structure Augusto et al., [5] 2018 
61. HybridILPMiner van Zelst et al., [70] 2018 
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Augusto et al., proposed a method of generating a 
structured (and sound) process model from an event 
log. They adopted a two-step approach. They first used 
a well-known heuristic that could discover an accurate 
but unstructured model. In the second step, they 
transformed that unstructured model into a structured 
sound model. This discover-and-structure approach was 
proven to outperform other existing methods 
considering complexity and accuracy measures [5]. 
An improvement over the ILP miner presented, which 
was based on hybrid variable-based regions. The 
number of variables used to solve an ILP based 
problem can be varied through hybrid variable-based 
regions. It is important to note thatdifferent numbers of 
variables have a different impact on average 
computation time for solving an ILP problem [64, 70]. 
Santhoshkumar et al., presented a process model 
based analytics for improving service quality in the 
healthcare domain by unitizing the combined benefits of 
Big-data and IoT [55]. 
Referring to our first research question (Q1): “What are 
the methods available for process discovery?” we have 
summarized all the sixty-one studies available to date 
on process discovery using caseid in Table 1. Each 
entry in Table 1 represents the method that was 
proposed, followed by the contributors of that work, and 
the year of publication. 
The algorithms listed in Table 1 are capable of 
producing different types of models like Procedural, 
Declarative, and Hybrid. Similarly, the adaptation of 
modeling languages also varies across different 
discovery techniques. Some of the popular modeling 
languages are: Petri nets, Declare, Process trees, 
WoMan, BPMN, Causal nets, State machines, Directed 
acyclic graphs, and Partial order graphs. We have not 
explicitly mentioned the type of models being produced 
and modeling languages used by different discovery 
algorithms, as our primary focus was on Q2 and Q3 
mentioned in Section II. Also, due to this reason only, 
we have not focused on parameters like accuracy, 
precision, fitness, generalization, F-score, and noise, 

which are being used to determine the effectiveness of 
a process discovery algorithm. Readers are advised to 
go through [17, 5] to have a better knowledge of these 
issues. While [5] presents a detailed review and 
analysis of the different process discovery techniques 
published in 2012 onward, a review of the works done 
before 2012 in the field of process discovery is 
presented in [17]. 

B. Process discovery in the absence of caseid 
In many unstructured business processes such as 
service-oriented processes, it may not be possible to 
capture or record caseids for process instances. Hence, 
the event logs are generated without caseids and 
termed as unlabeled event logs. In the absence of 
caseids, it becomes challenging to correlate different 
events or activities that belong to the same process 
instance and therefore, the task of process discovery 
becomes difficult. In the literature of process discovery, 
only two methods are available that deal with process 
discovery in the absence of caseids. We have listed out 
these two methods. 
The problem of discovering process models in the 
absence of a case identifier was first proposed  [21].  
The authors presented a probabilistic approach to 
estimate a process model utilizing an iterative 
Expectation–Maximization procedure. The same 
procedure has also been used to find the caseid's in 
unlabeled event logs. The method was able to discover 
process models with loops. 
Pourmirza et al., proposed a method to address the 
correlation challenge which arises due to the 
unavailability of caseid's in an event log, and hence, 
process discovery becomes a challenging task. The 
method was solved using Integer Linear Programming 
(ILP) based on precede/succeed matrix and duration 
matrix calculated from timestamps of event occurrence 
within an event log. The method was also able to 
generate the caseid attribute for the unlabeled event 
log, but it was limited to discover process models 
without loops. 

Table 2: Overview of different process discovery techniques in the absence of caseid. 

S. No. Method Contributor(s) Year 

Able to 
discover 

splits-
joins 

Able to 
discover 

loops 

Able to 
discover 
caseid 

Tested on 
synthetic 

logs 

Tested 
on real-
world 
logs 

1 EM-approach 
Ferreira and 

Gilblad 
2009 Yes Yes Yes Yes Yes 

2 CorrelationMiner Pourmirza et al., 2017 Yes No Yes Yes Yes 

 
The details of the above mentioned two proposals are 
listed in Table 2. Out of the two methods mentioned in 
Table 2, the algorithm presented [21] was able to 
produce a model with precision 61% and recall 41%, 
which are 24% and 22% lower than the results of the 
algorithm presented [50] respectively when  tested over 
a real-world event log from the BPI Challenge of 2012 
[66]. But, the method proposed [21] can process models 
having cycles or loops unlike the method proposed [50]. 
Both the methods were able to detect splits-and-joins, 
which captures the parallelization and branching 

available in a process model. Also, these methods were 
able to detect caseids for respective process instances. 

IV. METHODS AVAILABLE FOR INCREASING 
EFFICIENCY OF PROCESS DISCOVERY 
ALGORITHMS 

Modern-day information technology-enabled 
organizations produce and record a voluminous amount 
of data related to the business processes they execute 
in event logs. Hence, it is obvious that the size of the 



Sahu & Nayak        International Journal on Emerging Technologies   11(3): 383-394(2020)                         390 

event logs increases exponentially as the number of 
events increases linearly. Given the complex nature of 
the process discovery algorithms and the exponentially-
increasing event logs, it becomes important to have 
efficient implementations of process discovery 
algorithms so that process discovery becomes faster. In 
this regard, we have briefly described the frameworks 
that are proposed in recent years. 
 Evermann presented a framework based on the map-
reduce approach to enhance the execution efficiency of 
process discovery algorithms assuming the distributed 
nature of event log data produced by modern 
information systems [19]. The map-reduce approachwas 
applied to two of the well-known process discovery 
algorithms namely the α algorithm [61] and the 
FlexibleHeuristic Miner [76] which is an extended 
version of the originally proposed “HeuristicMiner” [77]. 
The proposed map-reduce framework was highly 
scalable but lacked in-memory computations.To test the 
effectiveness of these proposed framework event logs 
of a very large size are required. Due to unavailability of 
such large size real-world event logs, all these three 
methods were tested on artificial event logs of very large 
size. The authors used an artificial event log of size 80 
GB to show the effectiveness of their proposed Map-
Reduce framework on the α and the FHM algorithm 
respectively [19]. 
Sahu et al. [53] proposed a task-parallelism based 
approach to increase the execution efficiency of the 
αalgorithm [62].The authors applied the MPI framework 
over an artificial event log of the size of 1.02 GB to 
display the increased execution efficiency of the α 

algorithm. In this work, independent and computation-
intensive steps available in the α algorithm were 
identified and executed in parallel with the help of 
distributed memory parallelism available in the message 
passing programming (MPI) model. The execution 
efficiency of the proposed MPI-based framework was 
compared against the serial execution of the α algorithm 
and the enhanced execution performance expressed 
through the speedup [34] factor. They have exploited 
task parallelism in the α algorithm for process discovery 
by using the MPI programming model. Even though the 
proposed approach was able to achieve an average 
speedup of 3.94x, the upper limit of the speedup factor 
was limited by the number of independent steps 
available in the α algorithm. 
An OpenMP application programming interface (API) 
based framework was proposed [54] to increase the 
execution efficiency of the α algorithm. The proposed 
framework not only exploited the task-parallelism but 
also the data-parallelism available in the α algorithm. 
With this modified approach the maximum speedup 
achieved was speedup and the upper limit of the 
speedup factor was limited by the number of unique 
events or activities discovered in an event log. However, 
the framework suffered to increase the speedup factor 
further due to the limited-bandwidth bottleneck induced 
by the in-memory computations available in the 
OpenMP model. The proposed OpenMP framework for 
the α algorithm was used over an artificially generated 
event log of size 2 GB. The details of the above 
mentioned three frameworks are listed in Table 3. 

Table 3: Overview of different process discovery techniques in the absence of caseid. 

S. No. Method Contributor(s) Year 
Tested on 
synthetic 

logs 

Tested on 
real-world 

logs 

In-memory 
computation 

Applied on 
algorithm 

(s) 

Event 
log size 

1. Map-Reduce 
Evermann et al., 

[19] 
2014 Yes No No 

α [62], FHM 
[76] 

80 GB 

2. 
MPI 

framework 
Sahu et al., [53] 2018 Yes No Yes α [62] 

1.02 
GB 

3. 
OpenMP 

framework 
Sahu and Nayak 

[54] 
2019 Yes No Yes α [62] 2 GB 

V. DISCUSSION 

Based on the research questions Q1 and Q2 in Section 
II, we were able to find out sixty-one different process 
discovery techniques that relied on caseid and two other 
techniques that can discover process models in the 
absence of caseid respectively. Also, the search made 
for the research question Q3 yielded three proposals.  
Since our primary focus was Q2 and Q3, we have listed 
out our findings of the reviews on these two research 
questions below, which we believe, would be helpful for 
other researchers who are interested to work in the field 
of process mining. A probabilistic approach based on 
iterative Expectation-Maximization to tackle the 
challenge of discovering process models from unlabeled 
event logs presented [21].  
However, the accuracy of their method relied on the 
following two factors: the total number of sources in the 
event log, and the number of overlapping sources. With 
a high number of sources, it is easier to discover 
consistent behavior in the event log.  

But, with anincreasing number of overlapping sources, it 
becomes difficult to separate the events belonging to 
different sources. 
Two matrices namely the Precede/Succeed matrix and 
Duration matrix have been constructed and used to 
create a correlation miner to discover process models 
from unlabeled event logs. A high value for an entry in 
the Precede/Succeed matrix indicates that it is more 
probable to have an edge from the first to the second 
activity for any two given activities. Similarly, a low value 
for an entry in the Duration matrix indicates that it is 
more likely that there is an edge from the first to the 
second activity for any two given activities. At last, all 
possible business process models are found out that 
meet the rule mentioned above, and then the best one 
is selected based on the values from the 
Precede/Succeed matrix and the Duration matrix. The 
method relies on the Duration matrix in which an entry 
indicates the average time difference between events 
referring to the first activity and events referring to the 



Sahu & Nayak        International Journal on Emerging Technologies   11(3): 383-394(2020)                         391 

second activity for any two given activities. If the 
average time difference between any two activities is 
too high, then the correlation miner would not be able to 
correlate two activities [50]. 
The Map-Reduce framework for the α and the FHM 
algorithms proposed [19] is based on the distributed 
architecture and highly scalable. The proposed 
framework is more suitable and effective for processes 
where event log data are captured in a distributed 
fashion. However, for a centrally collected event log 
data, the proposed framework is not an efficient solution 
as it lacks in-memory computation.   
The proposed MPI framework is a distributed 
architecture but allows in-memory computations. Thus, 
the framework is scalable as well as compatible with in-
memory computations. But, the upper limit of the 
speedup factor achieved through this framework is 
limited by the number of independent tasks available in 
the α algorithm. 
The OpenMP framework for the α algorithm produced a 
better execution efficiency in terms of the speedup 
factor as compared to the MPI framework [53, 54]. The 
OpenMP framework not only exploited the task-
parallelism but also the data-parallelism available in the 
α algorithm. Specifically, this OpenMP based method 
targeted the number of unique activities and the causal 
relations available among those activities in an event log 
to exploit parallelism. Even though the framework was 
able to achieve a better speedup, the architecture itself 
is not highly scalable as the performance of this 
architecture degrades with increased memory traffic. 

VI. CONCLUSION 

In the last two decades, the field of process mining has 
attracted many researchers and a vast number of 
proposals have been published targeting many critical 
aspects of this topic. While the primary aim of the 
researchers was to develop process discovery methods, 
the secondary aim was to deal with critical issues such 
as detecting loops, splits-and-joins, and reducing noise. 
Similarly, the applications of process discovery 
algorithms have been widened as they are not confined 
to only the business process domain. Rather, they are 
being adopted in the fields like big-data, software 
engineering, and IoT.  

VII. FUTURE SCOPE 

The majority of the proposals in the field of process 
discovery rely on the caseid attribute of an event log to 
discover process models. Thus, the challenge of 
discovering process models in the absence of event 
logs is least explored and still open for future proposals. 
By discovering and gathering repeated event patterns 
from an unlabeled event log and establishing some kind 
of statistical correlations among those patterns may be 
considered to discover a process model. 
Even though a few proposals are available which talk 
about increasing scalability and execution efficiency of 
the process discovery algorithms, the number of 
algorithms tested with these proposals is limited to the α 
and the FHM algorithm. Also, these proposals have their 
demerits. So, the future research directions in this 
regard would be: (i) to try to overcome the limitations of 
the existing proposals, (ii) to test the efficacy of the 

existing proposals on remaining process discovery 
algorithms, and (iii) to develop new execution 
frameworks. 
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