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ABSTRACT: Japanese Encephalitis is a deadly infectious epidemic disease. Its treatment is mainly based on 
prevention. Vaccination can protect human against Japanese Encephalitis in a very effective way. 
Vaccination against this epidemic had been approved by W.H.O. only from 2009. Here, a mathematical model 
is developed to trace the transmission pattern of the outbreak after the vaccination. Susceptible human are 
vaccinated before the warm cum rainy season as the disease turns around during this days. It is vector 
borne epidemic. So a vector borne infectious model along with vaccination as a control variable is planned in 
both deterministic and stochastic ambiences. Eigen values, Lyapunov functions are utilized to verify the 
stability of the model and found asymptotically stable. Reproduction number �� has been determined and 
found greater than one which supports the stability of the endemic equilibrium of the models. Impacts of 
different parameters associated to the reproduction number are studied in detail incorporating sensitivity 
analysis. Increase of the death rate of carrier mosquitoes, natural recovery rate of the infective, the natural 
death rate and the disease-induced death rate affect the reproduction number inversely, whereas the contact 
rate of carrier mosquitoes and human and the rate of vaccinated-infected rate are directly proportional to the 
reproduction number. 
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I. INTRODUCTION 

Every vector borne disease follows certain transmission 
behaviour. Japanese Encephalitis (JPEN) is also a 
vector borne disease. Flavivirus is the causal virus. This 
virus is a family member of the JPEN serogroup of the 
Flaviviridae family [1]. The virus exists in a zoonotic 
transmission cycle among aquatic birds, bats, 
mosquitoes, swine etc. belonging to the Ardeidae family 
[2]. Humans become infected when bitten by an infected 
mosquito and are a dead-end host because of low 
viremia, preventing the virus from being transmitted 
further. A Culex type mosquito employs itself in 
conveying the virus from this virus-reservoir to the 
susceptible human population [3]. The ambiences which 
assist viral survival are associated to both viral and host 
factors that let virus entry from the blood into the brain. 
Host factors are vehemently significant in JPEN 
susceptibility [4]. The deadly virus takes many lives 
within a short period of time. It is declared as epidemic 
disease. It may or may not show any symptoms at the 
early period of infection. But suddenly it starts showing 
headache, vomiting, fever, confusion and seizers along 
with inflammation of the brain. Disease incubation 
period is from five to fifteen days. The disease first 
appeared in the 1871 in Japan. In the year 1924, this 
became the epidemic and thrashed the Japanese 
society by taking 6000 lives [5-7]. As per WHO record, 
about 69,000 clinical cases were registered out of which 
17,000 vigorous people have lost their lives [8]. 

Various researchers are researching on this epidemic 
from various fields. Researchers are also working on 
developing mathematical model of JPEN. Most of the 
researchers have done their works on deterministic 
model which study the robust behaviour of the disease. 
But in reality the outbreak doesn’t understand the robust 
nature. Tapaswi et al., developed a logistic differential 
equation model [9] considering density-dependent birth 
rate for mosquito population accepting the reservoir 
population fixed. Tapaswi and Ghosh (1999) formulated 
a populations model with a vector population [10]. 
Naresh and Pandey (2009) worked it with using 
differential equations and computational result [11]. 
Ghosh et al., examined a SIS model [12] with 
colonization. Kalita and Devi studied control model of 
JPEN with the inclusion of media awareness [13]. 
At this juncture, the influence of vaccination is taken as 
the studying variable with a non-linear deterministic 
model. The same model is shifted to a stochastic model 
[13-16] using Geometric Brownian Motion [16-18]. A 
suitable Lyapunov function is constructed to determine 
the global stability. The stability of the model is also 
verified with the help of its phase portrait. For the 
stochastic stability again another Lyapunov function has 
been constructed with the help of two theorems as 
discussed in Mathematical Theory of Control Systems 
Design [19] and Stochastic Stability of differential 
equations [20]. 
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II. MATERIALS AND METHODS 

A. State variables 
Mathematical model of infectious diseases can talk and 
shorten the work of studying the transmission behavior 
of a disease [21]. The infectious epidemic JPEN is 
disseminated by the carrier as described in the 
introduction. Being the carrier Culex mosquitoes carry 
the flavivirus from the pigs and wild birds and bite the 
susceptible human. Vaccination acts as the resistant of 
the JPEN. The mosquitoes keep on carrying the virus to 
the human until its death. Vaccinated human generally 
does not get infected. But sometimes vaccinated human 
may be infected because of expiry of the span of the 
power of vaccine. It does not transmit from human to 
human. Hence a mathematical model can be formulated 
for the infection cycle. To build the model, some state 
variables are taken as N(t) be the total population at 
time t, H(t) be the total susceptible population at time t, 
J(t) be the total JPEN infected population at time t, M(t) 
be the total mosquito population at time t who act as the 
carrier of the disease, Hv(t) be the total vaccinated 
population at time t.  

B. Mathematical model 
Assumptions for the model:  For a random region at a 
special time the following assumptions are presumed: 
β be the rate of contact between susceptible human and 
carrier mosquitoes at time t, 
γ be the rate of natural recovery at time t, 
λ be the rate of infection of vaccinated human due to the 
bite of mosquitoes at time t, 
d be the natural death rate at time t, 
α  be the death rate of carrier mosquitoes at time t, 
a  be the recovery rate of vaccinated-infected human at 
time t, 
b  be the vaccinated population from before time t, 
g  be the rate of vaccinated-infected human at time t, 
f  be the disease-induced death rate at time t. 
Model: Based on the above assumptions and Karmack-
McKendrick model [22-28] a nonlinear differential 
equation model is set up so as to understand the 
transmission trajectory as under: 

�
                       ���� = −
�� + ��� + �� − ��

    ����� = � − ���� − ���
                         ���� = 
�� + ���� − �� − �� − ������ = −��                     ��

��
��
�

      (1) 

From 
���� = −�� , we can write � =  !"#� ,  =!% , & '( integrating constant                                                    (2) 

Using Eqns. (2), (1) can now be rewritten as  

�
���� = −
� !"#� + �� !"#� + �� − ��

 ����� = � − ��� !"#� − ���                           ���� = 
� !"#� + ��� !"#� − �� − �� − ����
�
��               (3) 

Such that  Θ = 5(�6 , ��6 ,  �67 ∈ 9:; : � + � + �� = =, � >0, � ≥ 0, �� ≥ 0, = > 0, � ≥ 0, � > 0, 
 > 0, � ≥ 0,  >0, � > 0, � > 0, � > 0, � > 0,  ≥ 0, � > 0, �� ≤ = ≤  B� }. 

C. Boundedness of the state variables 

Lemma:  Suppose (�(�), ��(�), �(�))  be the solution of 
the system (3). If the initial condition (�6 , ��6,  �6) is in 

the probability space, then ∃ a unique positive solution E�(�), ��(�), �(�)7∀ � ≥ 0  such that the solution will 
remain in the probability space with probability one. The 
solution (�, ��, �) is defined in the interval [0,∞)  and lim� → ∞

KLM =(�) ≤ B�, where =(�) = �(�) + ��(�), +�(�). 
Proof: It is proposed that (�6, ��6,  �6) ∈ Θ,  the 

probability space. Therefore the coefficients of the 
equations of (3) are Lipchitz continuous. Hence, for any 
given initial condition (�6, ��6, �6) ∈ Θ, ∃ a unique local 

solution E�(�), ��, �(�)7∀ � ∈ [0, O), where T is final time. 

It can be deduced that �(�) + ��(�) + �(�) ≤ B� ∈ [0, O). 
Adding all the equations of (3), we get 

�P(�)�� ≤ � +�� !"#� + ��� !"#� − ��� !"#� − �� − ��� − �� −�� = � + ( + � − �)�� !"#� − �= − �� 
At no infection stage, � = 0 and �� = 0 =>  �P�� ≤ � − �= 

Integrating both sides, we get  = ≤ B� 

Therefore the solution E�(�), ��(�), �(�)7   is bounded 

within the interval [0, OR.  This gives =(�) ≤ B�   ∀ � ∈[0, O).  At � → ∞, !"#� → 0 => �P(�)�� ≤ � − �� − ��� −�� − �� = � − �= ( (� + �) → �  
Hence, 

lim� → ∞
Sup =(�) ≤ B�. 

So for non-negative initial conditions �6 > 0, ��6 ≥0, �6 ≥ 0, ∃ a non-negative solution defined in R and the 
set Θ = {(H, �� , J)/H > 0, �� ≥ 0, � ≥ 0 and � + �� + � =B�} is invariant. 

D. Equilibrium point 
Equating the equations of system (3) to zero as  −
� !"#� + �� !"#� + �� − �� = 0                        (4) � − ��� !"#� − ��� = 0                                                  (5) 
� !"#� + ��� !"#� − �� − �� − �� = 0                    (6) 
(i) Disease-free equilibrium is ]6(�, �� , �) = ]6(=, 0,0) 
(ii) For endemic equilibrium: 

From Eqn. (4), we have � = ^_`abcde:fghabcde:�  

From  Eqn.  (5), we have  �� = Biabcde:� 

And from Eqn. (6), we have  � = ha_bcde:ja_`bcdek:�:f  

So the endemic equilibrium point is 
 ]l(�∗, ��∗, �∗) =]l n^_`abcde:fghabcde:� , Biabcde:� , haobcde:ja_`bcdek:�:f p  
Endemic equilibrium exists if  
  
� !"#� + ��� !"#� − �� − �� − �� > 0 => 
 �!"#� + � ��!"#�(� + � + �)� > 1 

Hence the Reproduction number is 

              96 = ha_bcde:ja_`bcde(k:�:f)g   

E. Stability of the deterministic model 
Global Stability of the disease-free equilibrium: 
Let us consider a Lyapunov function as q(r) = rl� +rs�� + r;�  where rl , rs t� r; are constants  to be 
chosen in course of time. 
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And  
�u�� = vuv_ . �_�� + vuv_` . �_`�� + vuvg . �g�� = rl(−
� !"#� +�� !"#� + �� − ��) + rs(� − ��� !"#� − ���) +r;(
� !"#� + ��� !"#� − �� − �� − ��) = (rl −r;)(−
� !"#�) − rl�� − �� !"#�(rsλ − arl − �rs) −�{r;(� + � + �) − rlγ } − rs(��� − �) 

Disease-free equilibrium will be stable if 
(i) rl − r; > 0 (ii) rsλ − arl − �rs > 0 
(iii) r;(� + � + �) − rlγ > 0 
(iv) ��� − � > 0 
Global stability of the endemic equilibrium: 

Let us consider a Lyapunov function as q(w) = ls wl�s +ls ws��s + ls w;�s, xℎ!z! wl, ws t� w; are constants to 

be chosen in course of time. 

Now  
�u�� = vuv_ . �_�� + vuv_` . �_`�� + vuvg . �g�� = wl�(−
� !"#� +�� !"#� + �� − ��) + ws��(� − ��� !"#� − ���) +w;�(
� !"#� + ��� !"#� − �� − �� − ��) =−
� !"#�(wl� − w;�) − �� !"#�(�ws�� − wl� −�w;�) − �{w;(� + � + �) − �wl�} − �wl�s −ws��(��� − �) 

Endemic equilibrium will be stable if 
(i) wl� − w;� > 0 
(ii) �ws�� − wl� − �w;� > 0 (iii) w;(� + � + �) − �wl� > 0 (iv)��� − � > 0 
 
F. Stochastic model 
Deterministic model (3) can be converted to stochastic 
model by using Geometric Brownian Motion [15-17, 29-
32] as follows:  

��� = (−
� !"#� + �� !"#� + �� − ��)�� + |l(� − �∗)�rl��� = (� − ��� !"#� − ���)�� + |s(�� − ��∗)�rs�� = (
� !"#� + � ��!"#� − �� − �� − ��)�� + |;(� − �∗)�r;
}  (7) 

Eqn. (7) can be expressed as  �M(�)= �EM(�)7��+ �EM(�)7�r�                                                                                       (8) 
Where z = 1, 2, 3;   M(�) = (Ml(�) Ms(�) M;(�))�; �EM(�)7 =
�−
 !"#� − �  !"#� �0 −� !"#� − � 0
 !"#� � !"#� −(� + � + �)� M(�) ;   

�EM(�)7 = �|lMl 0 00 |sMs 00 0 |;M;� 

G. Stochastic Stability 
To understand the stochastic stability of system Eqn. 
(8), an operator L narrated in [15, 17, 19, 29, 35] is 
introduced as follows: 
 q�(�, M) =v�(�,�)v� + �(ℎ) v�(�,�)v� +ls Oz ���(M) v��(�,�)v�� �(()�             (9) 
Where   

v�v� =
�
��

v�v��v�v��v�v���
��,     v��v�� = � v��v������� 

Theorem 1: Assume a function �(�, M) ∈ �l,s(9 × 9�) 
exists, which satisfies the following inequalities as: 

 ��l|M|� ≤ �(�, M) ≤ �s|M|�q�(�, M) ≤ −�;|M|� ,   > 0¡ 
The trivial solution of Eqn. (9) is u

th
 moment 

exponentially stable. Given that v = 2, the trivial solution 
is exponentially mean square stable and the break-even 
p = 0 is globally asymptotically stable [33-35]. 
Theorem 2: Consider |lsMl < 2[(
 !"#� + �)Ml −
 M;!"#�R, |ssMs < 2[� Ms!"#� − Ml !"#� −� M;!"#�R, |;sM; < 2[�M; − (� + � + �)MlR hold, and 
then the zero solution of system (4.1) is mean square 
stable. 

Proof: Assume a function  �(�, M) = ls (£lMls + £sMss +£;M;s) 
Here,   

v�(�,�)v� = 0 

��(M) ¤�(�, M)¤M
= (Ml Ms M;) �−
 !"#� − �  !"#� �0 −� !"#� − � 0
 !"#� � !"#� −(� + � + �)� 

�£lMl£sMs£;M;� 

= (−
 Ml!"#� − �Ml + 
 M;!"#� Ml !"#� − � Ms!"#� + � M;!"#� �Ml −(� + � + �)M; 

�£lMl£sMs£;M;� 

= −£l(
 Ml!"#� + �Ml − 
 M;!"#�)Ml− £s(� Ms!"#� − � M;!"#�− Ml !"#�)Ms − £;{−�Ml + (� + �+ �)M;}M; ¥s�¥Ms = �|l 0 00 |s 00 0 |;� 

��(�) ¥s�¥Ms �(M) = �|ls£lMls 0 00 |ss£sMss 00 0 |;s£;M;s� 

Therefore 
ls Oz ���(�) ¦��¦�� �(M)� = ls (|ls£lMls +|ss£sMss + |;s£;M;s)  and hence 

 q �(�, M) = −£l n
 Ml!"#� + �Ml − 
 M;!"#� −ls |lsMlp Ml − £s n� Ms!"#� − Ml !"#� − � M;!"#� −ls |ssMsp Ms − £;(−�Ml + (� + � + �)M; − ls |;sM;)M;.  

This completes the proof of the theorem and hence it 
can be concluded that it follows asymptotic stability. 

III. RESULTS AND DISCUSSION 

A. Sensitivity Analysis 
To understand the contribution of each of the 
parameters in the Reproduction number a sensitivity 
analysis [32] is conducted under 
Sensitivity index of the system is given as:  

 K§̈ © = v¨©v§ . §̈
© 

The index table is shown Table 1. 

Interpretation: Table 1 reveals the sensitivity analysis of 
different parameters on the Reproduction number. α and � have additive inverse effect on 96. 10% increase of k 
increases 10% in the 96 . 20% increase of γ decreases 96  by 31%. 2.5% increase of d decreases 96  by 3%. 
42% increase of f decreases 96  by 65%. 2% g has 
0.18% positive impact on  96. 
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Table 1: Sensitivity index table. 

Parameters 
Sensitivity 

index 
Sensitivity index 

values � −� -1 
 

�
� + ��� 0.998   1 1 � −� -1 � 

�
� + ��� 0.998 

� 
−�� + � + � -0.3101 

� 
−�� + � + � -0.0388 

� 
−�� + � + � -0.6512 

�� 
���
� + ��� 0.0018 

g 
���
� + ��� 0.0018 

J -1 -1 

B. Numerical Simulation:  
In this section, the ongoing models (2.1.3) and (6) are 
examined graphically through numerical simulation [35-
37]. For this reason, Matlab 2016a software is being 
used. To use this technique some initial values of the 
basic variables and the parameters are listed as follows: 
If N = 500, H = 180, Hv = 10, J = 10, β = 0.62, k = 0.84, t 
= 0.01, γ = 0.2, d = 0.025, = 0.25, α = 0.21, a = 0.12, b = 
300, g = 0.02, f = 0.42, then the endemic equilibrium is ]l(5.5183,1278.9934,145.2946)  and the reproduction 
number is 96 = 14.52946. At this endemic equilibrium 96 > 1 and hence system becomes stable here. 

 

Fig. 1. Susceptible-Vaccinated-Infected limit cycle. 

Interpretation: Fig. 1 shows the limit cycle of 
Susceptible, Vaccinated and Infective for different point 
of time. It shows the huge increase of vaccinated human 
population. Susceptible human population though at the 
beginning but it has started increasing. Infective 
population also not that much increased. 
Interpretation: Fig. 2 depicts the limit cycle of infective 
population for various values of vaccinated population. 
Here it is clear that number of infective population varies 
for different values of g. 
Interpretation: Fig. 3 unveils the phase plane of infected 
Vs vaccinated human population. It shows a stable 
behaviour at a particular point (�� , �) as (550,20) which 
means that whenever the vaccinated population is 550 

and more then infective population become stagnant at 
20.  

 

Fig. 2. Infected limit cycle for different values of g. 

 
Fig. 3. Phase portrait of Vaccinated Vs Infected human. 

IV. CONCLUSION 

This paper is based on the control dynamics of JPEN. 
The study is carried out with the help of mathematical 
models. A robust nature is studied using deterministic 
model in model (3). The disease-free equilibrium shows 
stable behaviour under the conditions  (')rl − r; > 0, ('') rsλ − arl − �rs > 0 ,  (''')r;(� + � + �) − rlγ > 0 
and  (' )��� − � > 0  . The Endemic equilibrium ]l n^_`abcde:fghabcde:� , Biabcde:� , haobcde:ja_`bcdek:�:f p  is 

asymptotically stable for (') wl� − w;� > 0, ('') �ws�� −wl� − �w;� > 0 , (''') w;(� + � + �) − �wl� > 0  and (' ) ��� − � > 0.  
Eigen values of the Jacobian for the values taken in 
section (numerical results) are (-0.2686, -0.9211, -
0.2346). It shows the stability of the model.  
The stochastic model (8) is mean square stable under 
the conditions  |lsMl < 2[(
 !"#� + �)Ml − 
 M;!"#�R, |ssMs <2[� Ms!"#� − Ml !"#� − � M;!"#�R, |;sM; <2[�M; − (� + � + �)MlR.  
The reproduction number obtained here is 96 =ha_bcde:ja_`bcde(k:�:f)g = 14.52946 for the endemic equilibrium 

is ]l(5.5183, 1278.9934, 145.2946) . The phase portrait 
depicted in Fig. 3 shows the stability at the point (��, �) = (550,20). Sensitivity analysis is done in Table 
1. Increase of α, the death rate of carrier mosquitoes, γ, 
natural recovery rate of the infective, d, the natural 
death rate and f, the disease-induced death rate affect 
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the reproduction number inversely. β, the contact rate of 
carrier mosquitoes and human and g, the rate of 
vaccinated-infected rate are positively correlated with 
the reproduction number. 

V. FUTURE SCOPE 

The model can be verified with the actual data. From the 
sensitivity analysis, it is understood that carrier 
mosquitoes play a sensitive role in the reproduction 
number. So controlling of the mosquitoes can further be 
studied.  
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