
Ridha

& Saud

International Journal on Emerging Technologies 11(4): 282-291(2020) 282

International Journal on Emerging Technologies 11(4): 282-291(2020)
ISSN No. (Print): 0975-8364

ISSN No. (Online): 2249-3255

Mutual Component Convolutional Siamese Network for Heterogeneous Iris
Recognition

Jwad Ali Ridha
1
 and Jameelah Harbi Saud

2

1
Informatics Institute for Postgraduate Studies,

 Iraqi Commission for Computer and Informatics, Baghdad, Iraq.
2
College of Science, Mustansiriyah University, Baghdad, Iraq.

 (Corresponding author: Jwad Ali Ridha)
(Received 15 May 2020, Revised 22 June 2020, Accepted 06 July 2020)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Iris recognition system is a special system employed to identify individuals according to their
iris. The iris patterns are extremely randomized and unique. However, iris images captured by different
sensors have heterogeneous characteristics. Matching heterogeneous iris patterns can degrade the rate of
recognition and the system will not be as accurate as when all iris images are captured by the same sensor.
Therefore it is a challenging issue to design a model that finds the matching between heterogeneous iris
patterns. In this paper, a deep learning based framework, to address the issue of heterogeneous iris
recognition, is presented. The framework termed as Mutual Component Convolutional Siamese Network
(MCCSN), incorporates a learnable distance measure module into Siamese Neural Network (SNN)
architecture, when the identical twin branches of this network are formed from a pre-trained Convolutional
Neural Network (CNN), and sharing all parameters. Based on deep features extracted from input
heterogeneous pairs simultaneously by the base CNN branches, the learnable distance measure module is
designed to calculate the distance between heterogeneous iris patterns, and its parameters are learned
according to the binary label attached with each pair during training process. The binary labels determine the
similarity and dissimilarity between the iris images of each pair. The experiments showed that our MCCSN
achieved 100% test accuracy and 0.07% test loss.

Keywords: Convolutional Siamese Network, Heterogeneous Iris recognition, Mutual Component Distance.

I. INTRODUCTION

The science of recognizing individuals based on their
distinctive characteristics is called biometric. According
to these characteristics, biometric systems are
categorized as physiological, and behavioral. Behavioral
biometric systems include all methods that depend on
computation and data derived from an action, therefore
indirectly measure the characteristics of the human
body. Voice, keystroke and signature are considered
behavioral characteristics. Physiological biometric
systems comprise all methods that depend on direct
computation of a specific part of person body. Iris, face,
fingerprint, and DNA are considered physiological
characteristics [1].
Traditional methods adopted for personal identification
can be classified into either knowledge-based methods
or token-based methods. For example, knowledge-
based methods can use password created by the user
for identification, whereas Identification (ID) cards are
used by token-based methods. Nevertheless, traditional
methods get unreliable if, for instance, the password is
forgotten or the card is lost. Consequently, the demand
for reliable identification methods becomes highly
significant research area [2]. The iris is one of the most
reliable biometrics used for security purposes. The
human iris has extensively rich patterns. The details of
iris texture are randomly determined for the human eye
through the embryonic development, and they vary from
one individual to another even between the right and the
left eyes of the same individual. Moreover, the
environmental impacts cannot change the texture of the
iris [3].

Although iris recognition is relatively modern field, the
progress in this field has been so fast and effective. The
approaches to adopt machine learning methods are
even more modern. One of the effectively used machine
learning techniques in iris recognition systems is
Artificial Neural Network (ANN) [4].
Over past years, sensors for obtaining iris images had
significant changes, by upgrading existing sensors and
developing new ones [5]. When the iris images are
obtained by different sensors, the recognition rate will
be degraded due to heterogeneity of iris patterns.
Therefore, the performance of the recognition system
will not be as accurate as when all images are obtained
by the same sensor. Such issue is called “cross-sensor
iris recognition” [6] or “heterogeneous iris recognition”
[7]. The variation among different types of iris sensors
such as optical lens, illumination wavelength and image
resolution causes heterogeneous characteristics of iris
patterns, as a result, heterogeneous iris recognition is
rising as a significant issue [8].
The reliability of iris recognition system is considered
the motivation of this paper. The iris recognition system
is highly useful for several applications of computer
vision. The iris patterns have many advantageous that
make the iris recognition system one of the most reliable
biometric systems. Moreover, the iris is highly protected
since it is an internal organ of the eye. It is also
considered relatively stable feature over lifetime.
The main contributions of this paper can be summarized
into the following points:
— Design of a robust model based on Siamese
architecture of neural networks, where the parameters
of this model are shared between heterogeneous iris

e
t

Ridha

& Saud

International Journal on Emerging Technologies 11(4): 282-291(2020) 283

samples and initialized simultaneously. These sharable
parameters can help to decrease the error rate since the
difference will be only between the inputs.
— Design of a learnable distance measure module to
decrease the distance between the heterogeneous iris
samples of same subject and increase the distance
between the heterogeneous iris samples of different
ones.
— Time reduced by applying transfer learning
technique.
The identical branches of proposed model are formed
from a pre-trained model, where these branches are
frozen during training the proposed model.

II. LITERATURE SURVEY

The amount of publications that address the problem of
heterogeneous iris recognition is little. Garea Llano et
al., [9] proposed a cross-sensor iris verification system
for iris images acquired by different sensors, by applying
fusion methods at the level of segmentation stage. Their
system comprises capturing one or more images of the
iris for the same subject by multiple sensors, and, then,
applying at least two segmentation algorithms to localize
the pupil and iris boundaries. Liu et al., (2016)
proposed a deep learning based framework called
DeepIris, for heterogeneous iris verification. Their model
contains a layer called pairwise filter layer, which takes
pairs of heterogeneous iris images as input, where a
couple of pairwise filters convolve the input images and
summarize their feature maps to generate the similarity
map [10]. Their experimental results have shown that
the suggested method achieves promising performance
for both cross-sensor and cross-resolution iris
verification. Gangwar and Joshi (2016) also proposed a
deep learning based method for iris representation [11].
Their model named as DeepIrisNet, is constructed
based on deep Convolutional Neural Network (CNN)
architecture. The experiments showed that the deep
architecture of CNN can represent the micro-structures
of iris patterns effectively. Nalla and Kumar (2016)
proposed a domain adaptation framework, based on the
nearest neighbor classification, to address the cross-
domain (cross-spectral/cross-sensor) iris recognition
issue [12]. Their experiments showed that the
improvement in the performance of proposed model in
the cross-spectral iris recognition is higher in
comparison with the performance of the cross-sensor
iris recognition. Liu et al., (2017) proposed a code-level
approach in heterogeneous iris recognition [8]. Their
model transforms the number of iris templates in the
probe into a homogenous iris template based on gallery
sample.

Table 1: Summary of related work on heterogeneous
iris recognition.

Ref. Year Framework Accuracy%

[9] 2015
Fusion-based method at the
level of segmentation stage

96.1

[10] 2016
Deep learning based

method
95

[11] 2016
Deep learning based

method
98.78

[12] 2016
Domain adaptation

approach
89.92

[8] 2017 Code-level approach 98.74

The model is experimented on matching cross-sensor,
high-resolution versus low-resolution and, clear versus
blurred iris images. Table 1 provides a summary of all
discussed related works for heterogeneous iris
recognition problem.

III. METHODOLOGY

In this section, the general concepts of iris recognition,
neural networks and deep learning, that address the
problem of heterogeneous iris recognition, are
explained.

A. Iris Recognition System
Iris recognition system is a special system used to
recognize individuals based on their distinctive iris
patterns. The system is constructed, after iris image
acquisition, from four main parts: iris segmentation, iris
normalization, feature extraction and recognition
(matching) [13]. In segmentation stage, the iris and pupil
boundaries are localized and the region between them
is segmented. Then, the segmented region is
transformed from Cartesian coordinates to polar
coordinates, producing a fixed rectangular region during
the normalization stage. Feature extraction draws out
the biometric templates from normalized image and
finally, matching these templates strictly. Fig. 1 shows
the block diagram of iris recognition stages.

B. CNN based feature learning
Iris has a unique texture for each individual. This texture
represents the patterns of the iris. Feature extraction
methods extract these patterns in an iris image. Several
methods have been developed for effective feature
extraction, such as Gabor filter, Log-Gabor Filter,
Discrete Cosine Transform, Discrete Wavelet
Transform, and Contourlet Transform [14].
Currently, much attention is paid to CNN based feature
learning method in which, the image is fed to the CNN,
then the feature learning algorithm extracts the features
of input image directly [15]. Modern deep CNNs
revealed a phenomenon that when these networks
trained on images their first convolutional layers tend to
learn features that are similar to Gabor filter features
[16].

Fig. 1. Block diagram of iris recognition stages [17].

C. Manhattan Distance (MD)
Iris matching means finding similarity between iris
templates generated from feature extraction stage. One
of matching methods that has the least computational
complexity is Manhattan Distance (MD). The MD metric

Ridha

& Saud

International Journal on Emerging Technologies 11(4): 282-291(2020) 284

computes the distance between two points along axes
at right angles. The MD between two vectors is the sum
over absolute differences between their components. It
is an alternative measure to Euclidean Distance (ED),
used to reduce the computational complexity. The MD is
0 for vectors that are exactly the same, otherwise is
more than 0 To compute the distance between two iris
feature vectors, the MD function is expressed as follows
[18]:

 �� = ∑ ���	
 − ��	��	�
 (1)

where x���
 and x���� are the components of vectors x��
 and

x��� respectively, and N is the length of the vectors.

D. Artificial Neural Network (ANN)
ANN is an alternative computational model to the
instruction based programming, designed to simulate
the human's brain. Although ANNs are inspired by
neuroscience, they are not biologically in detail. The
methods of ANN are highly drawn from statistical
physics [19]. ANN consists of a number of simple
processing units each one called neuron, these neurons
are operating in parallel, communicating by distribution
signals to neurons in other level over a large number of
weighted connections. The connections are adapted
during training through associated weights to get better
performance just like human brain. Each neuron applies
a nonlinear function usually called activation function to
its input signal to obtain output signal. Mathematically,
the output on the neuron j can be expressed as follows
[20]:
 ν� = ∑ �	 . ��	 + ���	�
 (2)

 �� = ����� (3)

where x� represents the input signals, w�� represents the

associated weights of neuron j , b� denotes the bias

value which is an additional parameter used to adjust
the output, and φrepresents the activation function.

E. Activation Function
Activation function takes the output of the summing
function ν� as input and defines the output of neuron y�.
The activation functions can be linear or non-linear. The
activation functions adopted in proposed approach are
explained below:
1) Sigmoid function: Sigmoid function is the most
commonly used activation function in ANNs. It squashes
output values between 0 and 1. Therefore, it is
considered the best choice for neural networks of output
value ranging from 0 to 1. Sigmoid function can be
described in mathematical form as follows [21]:

 �� =

#$%& (4)

2) Rectified Linear Units (ReLU): ReLU is a threshold-
based activation function. It simply outputs 0 when
 �� ≤ 0 and outputs a linear function when �� >
0 Mathematically, the function can be expressed as
follows [22]
 �� = *+�(0, ��) (5)

3) Softmax: The softmax function is commonly used in
multiclass classification neural networks. It takes as
input a vector of / real numbers, and outputs a vector
of 0 probabilities, where the 1-2ℎ value in the output
vector corresponds to the 1-2ℎ class in the input vector.
This function can be expressed as follows [23]:

 4(5) = $67
∑ $6&8&9:

 (6)

where 5	 represents the probability of
class 1 and / denotes the total number of classes.

F. Supervised Learning
Supervised learning algorithms are one of the machine
learning algorithms in which the desired output is
encoded with training dataset and the algorithm learns
the patterns based on the target output encoded.
Supervised learning is commonly used in classification
problems, where the algorithm learns from the training
dataset and applies classification or prediction on the
test dataset [24].

G. Deep Learning
Recently, large datasets and the increasing of
computing power have become easily available.
Consequently, scaling up machine learning systems to
be more powerful has become possible. In the context
of neural networks, deep learning means that the
network has more than one hidden layer. Nowadays,
the numbers of layers used in deep learning range from
five to more than a thousand [22].

H. Convolutional Neural Network (CNN)
CNN is the commonly used deep network form which
was inspired by animal's visual cortex. They are widely
used in several domains, such as object recognition,
object tracking, pose estimation, text detection and
recognition, visual saliency detection, action recognition,
scene labeling, and many more [25]. CNN is mainly
composed of multiple convolutional layers, pooling
layer, and Fully Connected (FC) layers as shown in Fig.
2. Each convolutional layer generates a consecutively
higher-level abstraction for the input data, called a
feature map, which conserves unique information [22].
In addition to fundamental layers, some special layers
can be added to accelerate the performance of CNN
such as, Dropout layer [26], and Batch Normalization
(BN) layer [27]. These layers are discussed next.

Fig. 2. Common CNN architecture [16].

1) Convolutional Layer: Convolutional layer represents
the key unit of CNN. It is simply, a set of neurons
arranged to form the feature maps. The parameters are
set of learnable filters convolving with the input feature
map to generate a separate two dimensional activation
maps stacked together, producing the output feature
map. Neurons of the same feature map share the
parameters; therefore, the network complexity is
reduced by reducing number of parameter [25].
2) Polling Layer: Pooling is a computational operation
that reduces the dimensionality of feature maps. Pooling
increases the network robustness and enables it to be
invariant under distortions and small shifts. In pooling, a
set of values within a receptive field are grouped into a
smaller number of values, according to the pooling form
(max or average pooling) and the size of its receptive
field. Typically pooling is performed over on non-
overlapping blocks where the stride size is equal to the
pooling size [22].

Ridha

& Saud

International Journal on Emerging Technologies 11(4): 282-291(2020) 285

3) Fully Connected (FC) Layer: FC layer is also called
Multi-Layer Perceptron (MLP). In this layer, neurons are
arranged in one dimension and fully connected to all
neurons in the preceding layer, as in traditional
networks [25]. Usually, a small number of FC layers are
added after the convolutional layers for classification
task [22].
4) Dropout Layer: Several approaches have been
presented to reduce overfitting neural networks. One of
these methods is Dropout technique, which prevents
overftting problem and provides a way to combine many
different architectures of ANN efficiently. The term
Dropout means dropping out (temporarily removing)
randomly chosen units in a neural network, along with
all their connections [26].
5) Batch Normalization (BN) Layer: BN is a technique
used to reduce the phenomenon of Internal Covariate
Shift (ICS), based on normalizing each feature in layer
inputs, by making it have the mean of zero and the
standard deviation of 1 [27].

I. Siamese Neural Network (SNN)
SNN is metric learning neural network with two identical
neural network branches of shared weights initialized
and update simultaneously during training [29]. In SNN,
the network branches are responsible for feature
extraction from the inputs, while the joining layer learns
the metric between the extracted feature vectors. With
this characteristic, SNN has been used in several
application with many modifications have been
developed [28]. Fig. 3 shows an abstract architecture of
the SNN.

Fig. 3. Abstract architecture of SNN [29].

J. Training of Feed-forward Neural Network (FNN)
In general, training the FNN comprises two main
consecutive parts: the forward pass when the outputs
are configured according to the given inputs and the
current parameters, and the backward pass when the
parameters are updated according to the error [29].
1) Forward Pass: Forward pass is the easy part of
training process in which the activation of each neuron
in one layer is computed according to the neuron inputs
and learning parameters, and then those activations are
used as the inputs for the next layer where the
activations are computed according to next layer
parameters, and so on until the final output of network is
obtained [29].
2) Computing the Error: The error is simply a function
of difference between the outputs and the targets [29].
Several functions are used to compute the error of the
networks. These functions are called loss or cost
functions. The loss functions used in proposed
approach are clarified bellow:
a) Cross Entropy Loss (CEL): CEL loss function is
widely used in classification field. Mathematically, it can
be expressed as fallows [29]:

 ℒ = −

� ∑ <2= ln �= + (1 − 2=) ln(1 − �=)A�=�
 (7)

where B is the total number of training samples, tFis the
target value and yF is the output value.

b) Contrastive Loss (CL): CL loss function is highly
useful in Siamese networks. Unlike traditional loss
functions, such as CEL, where the error is computed as
a sum over samples, the CL function computes the error
over pairs of samples. This function can be written as
fallows [30]:

 ℒ = (1 − �)

� (G�)� + (�)

� <*+�(0, * − G�)A�(8)

where y is the similarity label, m > 0 is a margin,
and G� denotes the Euclidean Distance between the
outputs of SNN branches.
3) Backward Pass: The method in which the errors are
sent backwards through the network is called Back
Propagation (BP) of error. BP algorithm is used to
compute the gradient in weight space of FNNs. It is
about understanding how the cost function is sensitive
to the adjustment of the weights in a network [29].

K. Training Optimizers
Actually, the loss function, used in BP is an average
over loss functions for individual samples. This means
the gradient is an average over gradients computed
separately, for each input. When dealing with large
number of training samples, this strategy can be,
significantly time consuming, thus learning gets slower.
An idea to speed up learning regardless the number of
training samples is to consider the gradient by
computing the loss for a mini batch of randomly chosen
training samples. This method is termed as Stochastic
Gradient Descent (SGD) [31]. A variation of SGD, called
Momentum-based SGD [32], is used to accelerate the
original algorithm and reduce the oscillations around
local minima that appear with SGD, via using a velocity

vector generated by adding a fraction to the gradient
vector, and then using this vector to update the weights
instead of the original gradient vector. An adaptive
gradient algorithm called Root Mean Square
Propagation (RMSProp) [33], is used to make the
convergence easier by using adaptive learning rate
through dividing gradient values by the root of squared
gradient.

L. Transfer Learning
The transfer learning means training a base network on
base dataset and task, and then transferring the learned
feature layers to another network called target network
to be trained on new target dataset and task. Usually,
this is done by choosing the first n layers of the trained
base network to be the first n layers of the new target
network. Then, additional layers are added to the target
network proportional to the new target task. The
additional layers of the target network are the only
layers that are trained toward the target task, while the
transferred feature layers are left frozen, meaning that
the error is propagated into additional layers only [16].

IV. PROPOSED SYSTEM

The framework for proposed heterogeneous iris
recognition system is shown in Fig. 4. This framework
comprises three phases: the CNN training phase,
Mutual Component Convolutional Siamese Network
(MCCSN) training phase, and MCCSN testing
(identification) phase. All phases share the fundamental
preprocessing module of the system. In CNN training
phase, the base CNN is trained for feature learning.
During this phase, the parameters are automatically
learned and employed to extract feature vectors of input
iris images during MCCSN training phase, where two

Ridha

& Saud

International Journal on Emerging Technologies 11(4): 282-291(2020) 286

branches constructed from the base CNN are used for
input pairs. In MCCSN training phase, the model learns
the similarity and dissimilarity between feature vectors
of each input pair. The parameters for learnable
distance measure function of MCCSN are adapted and
used for learnable matching process during
identification phase. The architecture of MCCSN is of
SNN architecture type in which the parameters of both
CNN branches are shared.

Fig. 4. The framework of proposed system.

A. Preprocessing Module
The preprocessing module consists of four main stages:
iris segmentation, normalization, image enhancement,
and finally, selecting Region of Interest (ROI) from the
lower half of iris, which is relatively noise free. The input
of this module is the iris image and the output is a noise
free ROI.

B. The Architecture of MCCSN
The two branches of MCCSN are formed from a pre-
trained base CNN. These branches are responsible for
feature extraction process based on what feature
learning that the base CNN gained during training for
classification. The output vectors of two branches are
combined and passed to the Mutual Component
Distance (MCD) layer to compute the distance between
mutual components of feature vectors, and then the
resultant vector is passed through three of FC layers to
decrease the error. Next layer is BN layer to enhance
the training process. Finally, the distance is measured
by the weighted sum layer and the result is squashed

between 0 and 1 by using sigmoid function, Fig. 5
describes the MCCSN architecture.

Fig. 5. The architecture of MCCSN.

1) The Architecture of Base CNN: The base CNN
consists of a set of convolutional layers with filters of
varying size and stride of 1. The activation function
applied in all convolutional layers is a ReLU function.
The convolutional layers are optionally followed by max-
pooling layer with filter size of 2 and stride of 2. The last
layer before the output layer is a flatten layer which
reshapes the convolutional feature map to a feature
vector. The BN layer is added to reduce ICS, and
dropout layer is used to prevent the network from
overfitting. The output layer is FC layer activated by
softmax function. The base CNN is designed deeply and
carefully. The output feature maps before flatten layer
are one dimensional, so that the flatten layer just
rearranges them without changing their shapes. Table
2 states the base CNN layers where the preprocessed
image is passed through them. The output shape of
input, convolutional, and pooling layers is described in a
three dimensional form of (height × width × depth),
whereas the output shape of flatten and later layers is
described in a one dimensional form.
2) Mutual Component Distance (MCD) Layer: Images
obtained by different sensors can have heterogeneous
characteristics. Using one of distance measure
functions to match between such images can result in
false recognition. The main idea of MCCSN is to create
a learnable distance measure function to learn the
similarity and dissimilarity between heterogeneous iris
images. The distance measure function chosen to be
learnable is the MD function that has been expressed in
Eq. (1). The first step to create such learnable function
is by breaking apart Eq. (1) into two steps, as follows:

 *��� = |��	
 − ��	�| (9)

 �� = ∑ *���	�	�
 (10)

The components of the MCD vector m���� represent the
absolute differences between the mutual components of
feature vectors corresponding to the input pair. Eq. (9) is
implemented in MCD layer where the inputs of this layer
are the feature vectors generated by the identical
branches of MCCSN, simultaneously. Eq. (10) is
postponed to the weighted sum layer in order to
reformulate it as a learnable function.

Ridha

& Saud

International Journal on Emerging Technologies 11(4): 282-291(2020) 287

Table 2: The proposed base CNN layers.

Layer Activation Stride Output shape

Input – – 48 × 210 × 1

Convolution ReLU 1 44 × 206 × 32

Convolution ReLU 1 40 × 202 × 32

Convolution ReLU 1 37 × 199 × 64

Convolution ReLU 1 34 × 196 × 64

Pooling – 2 17 × 98 × 64

Convolution ReLU 1 15 × 96 × 128

Convolution ReLU 1 13 × 94 × 128

Pooling – 2 6 × 47 × 128

Convolution ReLU 1 4 × 45 × 256

Convolution ReLU 1 2 × 43 × 256

Pooling – 2 1 × 21 × 256

Flatten – – 5376

BN – – 5376

Dropout – – 5376

FC Softmax – 108

3) FC Layers: Applying weighted sum over MCD vector
components directly increases the error rate. In our
proposed system, three of FC layers are used to
decrease the error. These layers act as dimension
reduction layers, since the size of MCD vector m���� is

reduced while it is passed through them, generating *����� ′.
The activation functions of all these layers are ReLU.
4) BN Layer: Passing the MCD vector through FC
layers makes the impact of ICS phenomenon appear
again. Since the output of MCCSN model is ranging
between 0 and 1, it is necessary to adopt a BN layer
after the FC layers to reduce this impact, thus help the
model to converge faster.
5) Weighted Sum Layer: In the weighted sum layer,
Eq. (10) is reformulated to be in learnable form. This
operation is inspired by the foundation of ANN, which is
the neuron. The mathematical form of the neuron is
expressed in Eq. (2) which is just a summation over
elements that are multiplied by weights and adjusted by
bias value, as well Eq. (3) which represents the
activation function to generate the final output. Based on
the above, the weighted sum over all components of the

vector *���′can be expressed as follows:

 ��J = K *���	
′

�

	�

. �	 + � (11)

By this equation the second step of original MD distance
function is written as a learnable function. Since the
desired output is 0 for similar pairs and 1 for dissimilar
pairs, the computed distance is activated by a sigmoid
function σ to squash output between 0 and 1 as follows:
 � = σ(��J) (12)
During MCCSN training phase, the learning parameters
are updated according to the desired output associated
with each pair, repeatedly until convergence.

C. Generating Multiplicative Dataset
Dealing with dataset that consists of images acquired by
different sensors gives an opportunity to expand it by
applying Cartesian product. Let A be the set of sample
images for a given subject, obtained by sensor1, B the
set of sample images for the same subject obtained by
sensor2, and C the set of sample images for other
subjects, obtained by sensor2 so that C is equivalent to
B. The Cartesian product of A and B, denoted by A × B,
is the set of all similar pairs (a, b) where a is a member
of A and b is a member of B. The Cartesian product

of A and C, denoted by A × C, is the set of all dissimilar
pairs (a, c) where a is a member of A and c is a member
of C. The union of A × B and A × C, denoted by (A × B)
∪ (A × C), represents the final dataset which contains all
similar and dissimilar pairs. The steps for generating
multiplicative dataset are described in Algorithm 1.

Algorithm 1: Generating Multiplicative Dataset

Input: Subset1 // dataset of sensor 1
 Subset2 // dataset of sensor 2
Output: pairs[] // similar and dissimilar pairs
 labels[] // similarity indicating labels
Begin
for L= in (subset1) // all subjects in dataset1
 for+	 in (L=) // all elements of set A

 forb� in (BF) // all elements of set B in dataset2

 similar[] ← (a�, b�)

 end for

 forb� in (BF) // all elements of set C in dataset2

 dissimilar[] ← (a�, c�)

 end for
 end for
end for
for all similar and dissimilar pairs
 pairs[] ← [similar[] , dissimilar[]] // arrange pairs

alternatively labels[] ← [0 , 1]
end for
End

D. Training Schedule
The training schedule comprises two phases: CNN
training for feature learning purpose, and MCCSN
training for distance learning purpose. The pixel values
of iris images in both phase, are simply scaled down to
the range between 0 and 1 via dividing each pixel value
by 255. This can help in reducing training time.
1) CNN Training Phase: In CNN training phase, the
base CNN is trained on iris images for classification.
While the model is classifying the inputs it learns the
features of different samples. Each input image is
shifted by two pixels to the right, down, and to the right
and down together, to create three additional samples
from each one. This can effectively accelerate the
feature learning process. The input images are firstly
subjected to preprocessing module. The training
parameters are updated by using momentum-based
SGD and RMSprop to choose the most effectively
transferred learning between the two optimizers. The
gradient is computed through the CEL function. The
training is stopped after some epochs when the loss
stops decreasing to ensure the model generalization
and prevent from overfitting with the assistance of
dropout operation.
2) MCCSN Training Phase: In MCCSN training phase,
similar and dissimilar pairs are fed to MCCSN model
alternatively, with a binary label indicating their
similarities. The identical branches created from the
base CNN are frozen and the learnable parameters are
initialized simultaneously to generate feature vectors.
The feature vectors are obtained from the dropout layer
of the base CNN and the output layer is neglected for
new target task. The vectors then, passed through
MCCSN layers, to compute the distance between the
vectors of each pair. The parameters are updated
according to the binary label value attached with each
pair, if the label is 0 then the parameters are updated to
decrease the output, and if the label is 1 then the

Ridha

& Saud

International Journal on Emerging Technologies 11(4): 282-291(2020) 288

parameters are updated to increase the output. These
parameters are updated by using RMSprop. The
gradient is computed by using the modified CL function.
The modification comprises replacing the ED by
σ(MDw). As in CNN training phase, the training is
stopped after some epochs when the loss stops
decreasing. Only the parameters of FC layers and
weighted sum layer are updated during training while
MCD layer just calculates the absolute difference
between mutual components of feature vectors and has
no learnable parameters. The training procedure of
MCCSN is briefly described in Algorithm 2.

Algorithm 2: MCCSN Training

Input: (I
1
i, I

2
i) // training image pairs

 yi // similarity indicating label
Output: Similarity score and learnable parameters
Begin
Initialize all parameters using pre-trained base CNN
While not converge do:
 Input image pairs and get feature vectors
 Input feature vectors to MCD layer and get *���
 Pass MCD vector to FC layers and get *���P ′
 Apply BN
 Compute MDw

 Squash MDw using sigmoid function

Ifyi= 0 then
 update W to decrease MDw
else

 update W to increase MDw
end if

end while
End

E. MCCSN Testing
To test the trained MCCSN model, the system takes the
input iris image obtained by sensor1 and creates image
pairs with all images in the dataset of images obtained
by sensor 2, where the first image in all pair is the input
image. The learnable parameters of CNN are used to
generate feature vectors, while the learnable
parameters of MCCSN are used to compute the
distance between the sample images of each pair. The
output of the model is ranging between 0 and 1, which
represents the squashed value of distance. The similar
pairs have a distance close to 0, and dissimilar pairs
have a distance close to 1. Based on a predefined
threshold, the system returns the person identity that
has minimum distance with input image, otherwise,
returns unknown person.

V. RESULTS AND DISCUSSION

Since we adopted the transfer learning technique in this
approach, two datasets are employed in this
experiment: CASIA Dataset Version 1.0 (CASIA V1.0)
which is used in the CNN training phase and CASIA
Dataset Version 2.0 (CASIA V2.0) which is used in the
MCCSN training phase. All images of both datasets are
in bitmap (*.bmp) format. Table 3 summarizes the
characteristics of both datasets.
The experiments have been carried out under the
environment of Windows-7 64-bit operating system,
laptop computer processor: Intel Core i7 CPU, 2.80
GHz, and (4GB) RAM.

Table 3: The The characteristics of CASIA V1.0 and CASIA V2.0.

Characteristics CASIA V1.0
CASIA V2.0

Device 1 Device 2

Sensor Homemade CASIA close-up iris camera OKI IRISPASS-h CASIA-IrisCamV2

Environment Indoor Indoor Indoor

Session Two one one

No. of classes 108 60 60

No. of images per class 7 20 20

Resolution 320×240 640×480 640×480

A. Preprocessing
Fig. 6 shows the results of preprocessing module. The
size of normalized image is (420×60), whereas the size
of ROI is (210 × 48).

Fig. 6. Preprocessing of sample iris images, (a) CASIA
V1.0, (b) sensor1 of CASIA V2.0, and (b) sensor2

of CASIA V2.0.

B. Training the Base CNN
The base CNN is trained on the classification of CASIA
V1.0 images. After applying shifting on the images of
dataset, the result was three samples plus the un-
shifted one. As a result, the number of samples for each
class became 28, where 23 of them are used for training
and remaining 5 for testing. The total number of dataset
images is 3024. The categorical CEL is used to
compute the cost during training process. The
momentum-based SGD with momentum value of 0.9
and RMSProp are adopted to train the model with the
same initial learning rate of 0.001. The learning rate in
both experiments is reduced by the factor value of 0.5
when the loss stops to decrease. The model is trained
with batch size of 128. Table 4 lists the hyper
parameters and the model accuracy and loss by using
both momentum-based SGD and RMSProp optimizers.
Both models have the same accuracy, while there is a
small difference in loss which is 0.0092. Fig. 7 shows
the plot of loss and accuracy for test dataset in both
experiments.

Ridha

& Saud

International Journal on Emerging Technologies 11(4): 282-291(2020) 289

Fig. 7. A comparison between using momentum-based SGD and RMSProp for training the base CNN, (a) the plot of
accuracy, and (b) the plot of loss.

Table 4: Base CNN Accuracy and Loss with Corresponding Hyperparameters.

Batch size

learning rate Loss
function

Optimizer Loss% Accuracy%
Initial value Reducing factor

128 0.001 0.5 CEL RMSProp 2.19 100

128 0.001 0.5 CEL SGD 1.27 100

Table 5: MCCSN Model Accuracy and Loss With Corresponding Hyperparameters

Batch size

learning rate Loss
function

Base
Optimizer

Loss% Accuracy%
Initial value Reducing factor

128 0.00004 0.9 CL RMSProp 5.41 92.50

128 0.00004 0.9 CL SGD 0.07 100

C. Training the MCCSN
The advantage of feature learning that the base CNN
has acquired during training for classification is adopted
to extract feature vectors of each input pair
simultaneously during MCCSN training phase. This is
done by discarding the last layer of the base CNN which
is the classification layer since the new target task is
extracting features. The base CNN branches are frozen
during the training process of MCCSN. The trainable
part of MCCSN begins after MCD layer. The set of FC
layers including the weighted sum layer are trained on
CASIA V2.0, after being rearranged as similar and
dissimilar pairs by using Cartesian product and fed
alternatively to the model. The modified CL function is
used to compute the cost during training process. The
RMSProp is adopted to compute the gradient. A small
initial learning rate value of 0.00004 is used with
reducing factor value of 0.9 when the loss stops to
decrease. The model is trained with batch size of 128.
Table 5 lists the hyperparameters and the model
accuracy and loss by using both versions of base CNN.

Fig. 8. A comparison between using the two versions of
base CNN to initialize MCCSN, (a) represents the plot of

accuracy, and (b) represents the plot of loss.

Although both versions of base CNN have same
accuracy and small difference in loss, using the model
learned with momentum-based SGD to form MCCSN

branches gave accuracy of 100% and loss of 0.07%,
while using the model learned with RMSProp gave
accuracy of 92.50% and loss of 5.41%. This means that
the first model has the feature learning advantage over
the later one. Fig. 8 shows the plot of loss and accuracy
for test dataset in both experiments.

D. The Time Reduced Using Transfer Learning
The time reduced by using transfer learning technique
can be obtained by first, calculating the time consumed
during training the base CNN model. This means
multiplying the number of epochs by the time per one
epoch. As expressed below:
QRRSTSUV S	W$ = QRR$XTYZ[× QRR$XTYZ S	W$ (13)

Then, the total time calculated by Eq. (13) is divided by
the number of epochs expended during MCCSN training
phase. The resultant value represents the share time
added to each epoch time of MCCSN training phase
when using transfer learning technique i.e. when the
CNN branches are frozen. This value represents the
total time for one epoch of MCCSN training.
Mathematically, this is expressed as follows:

(14)

The time saved with transfer learning strategy can be
estimated by comparing the value computed by Eq. (14)
with the epoch time consumed without using transfer
learning technique. This is done by calculating the
difference between the two values. For instance, the
total epoch time in minutes for training the MCCSN by
using RMSProp with learning rate of 0.00004 and the
base CNN trained with momentum-based SGD with
learning rate of 0.001, is calculated as follows:

Ridha

& Saud

International Journal on Emerging Technologies 11(4): 282-291(2020) 290

The experiment showed that time consumed in one
epoch during training the MCCSN model without using
transfer learning is 46.25 minutes. By computing the
difference between this value and the value calculated
in Eq. (14), which is 34.38, the result we get is 11.87
minutes. This is the time reduced for only one epoch.

E. Testing the MCCSN

Fig. 9 shows the distance measure between 36 pairs of
iris images. The image samples of the first row belong
to the subset of sensor1, the image samples of the first
column belong to the subset of sensor2, and the
intersection of the row with the column represents the
distance between the samples.

Fig. 9. Distance measure between some image samples, arranged in pairs where the images in these pairs are
obtained by different sensors.

F. Comparing Proposed MCCSN with Other Methods
We conclude the evaluation of our MCCSN by
comparison with the latest frameworks discussed in
literature survey. Table 6 lists the models with their
accuracies.

Table 6: A Comparison of MCCSN with other
Frameworks.

Framework Accuracy%

DeepIrisNet (2016) [11] 98.78

Code-level approach (2017) [8] 98.74

MCCSN 100

VI. CONCLUSION

In this paper we have presented a deep learning based
approach to address the issue of heterogeneous iris
recognition, based on the architecture of CNN and SNN.
CNN based feature learning is an effective method to
extract the features of the input image directly fed to the
network. SNN is a robust metric learning neural network
with two identical branches. However, training a network
with two or more branches would increase time
complexity of training process. Using transfer learning

technique can reduce the time complexity by freezing
the branches during training and using their prior
knowledge. Searching for hyperparameters that fine-
tune the network is the most difficult aspect of
establishing a network. It can be performed by carefully
testing sets of hyperparameters that should maximize
the effectiveness of the learning method. The
experimental analysis indicated that the highest
recognition accuracy can be achieved if the base CNN
is trained by using momentum-based SGD with learning
rate of 0.001 reduced by the factor of 0.5, and the
proposed MCCSN is trained by using RMSProp with
learning rate of 0.00004 reduced by the factor of 0.9.

VII. FUTURE SCOPE

This work can be expanded in different directions. Some
ideas for future works are suggested below:

• Training the base CNN on a larger dataset for further
performance enhancement, thus, ensuring the
generalization of proposed CNN.

• Applying proposed MCCSN on cross-spectral
environment where the iris images are obtained by
near-infrared versus visible illumination.

Ridha

& Saud

International Journal on Emerging Technologies 11(4): 282-291(2020) 291

• Applying proposed MCCSN on other biometrics, or
even on other fields of pattern recognition.

REFERENCES

[1]. Singh, J. P., Jain, S., Arora, S., & Singh, U. P. (2019). A
Survey of Behavioral Biometric Gait Recognition: Current
Success and Future Perspectives. Archives of Computational
Methods in Engineering, 1-42.
[2]. Cui, J., Wang, Y., Tan, T., Ma, L., & Sun, Z. (2004, August).
A Fast and Robust Iris Localization Method based on Texture
Segmentation. In Biometric Technology for Human
Identification (pp. 401-408). International Society for Optics and

Photonics.
[3]. Bowyer, K. W., Hollingsworth, K., & Flynn, P. J. (2008).
Image Understanding for Iris Biometrics: A Survey. Computer
Vision and Image Understanding, 110(2), 281-307.
[4]. De Marsico, M., Petrosino, A., & Ricciardi, S. (2016). Iris
Recognition through Machine Learning Techniques: A
Survey. Pattern Recognition Letters, 82, 106-115.
[5]. Matey, J. R.,&Kennell, L. R. (2009). Iris Recognition beyond
one Meter. In Handbook of Remote Biometrics (pp. 23-59).

Springer, London.
[6]. Xiao, L., Sun, Z., He, R., & Tan, T. (2013). Coupled Feature
Selection for Cross-Sensor Iris Recognition. In 2013 IEEE Sixth
International Conference on Biometrics: Theory, Applications
and Systems (BTAS) (pp. 1-6). IEEE.
[7]. Zheng, B. R., Ji, D. Y., & Li, Y. H. (2014, May).
Heterogeneous Iris Recognition using Heterogeneous Eigeniris
and Sparse Representation.In 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP) (pp. 3764-3768). IEEE.
[8]. Liu, N., Liu, J., Sun, Z., & Tan, T. (2017). A Code-Level
Approach to Heterogeneous Iris Recognition. IEEE
Transactions on Information Forensics and Security, 12(10),
2373-2386.
[9]. Garea Llano, E., Colores-Vargas, J. M., Garcia-Vazquez,
M. S., Zamudio Fuentes, L. M., & Ramirez-Acosta, A. A.
(2015). Cross-Sensor Iris Verification Applying Robust Fused
Segmentation Algorithms. In 2015 International Conference on
Biometrics (ICB), 17-22.
[10]. Liu, N., Zhang, M., Li, H., Sun, Z., & Tan, T. (2016).
DeepIris: Learning Pairwise Filter Bank for Heterogeneous Iris
Verification. Pattern Recognition Letters, 82, 154-161.
[11]. Gangwar, A., & Joshi, A. (2016). DeepIrisNet: Deep Iris
Representation with Applications in Iris Recognition and Cross-
Sensor Iris Recognition. In 2016 IEEE International Conference
on Image Processing (ICIP) (pp. 2301-2305). IEEE.
[12]. Nalla, P. R., & Kumar, A. (2016). Toward More Accurate
Iris Recognition using Cross-Spectral Matching. IEEE
transactions on Image Processing, 26(1), 208-221.
[13]. Harifi, S., & Bastanfard, A. (2015, September). Previous
Works About Iris Recognition Stages. In 2015 Forth
International Conference on e-Technologies and Networks for
Development (ICeND) (pp. 1-10). IEEE.

[14]. Fasna, K. K., Athira, P., & Remya, K. J. S. (2016). A
Review on Iris Feature Extraction Methods. International
Journal of Engineering Research and General Science., 4(2),

663-667.
[15]. Alaslani, M. G., & Elrefaei, L. A. (2018). Convolutional
Neural Network Based Feature Extraction for Iris
Recognition. International Journal of Computer Science &
Information Technology, 10(2), 65-78.

[16]. Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014).
How Transferable are Features in Deep Neural Networks?.
In Advances in Neural Information Processing Systems (pp.
3320-3328).
[17]. Kamboj, N., & Gupta, P. (2015). A Review on
Segmentation Techniques for Iris Recognition
System. International Journal of Engineering and Management
Research (IJEMR), 5(2), 14-16.
[18]. Greche, L., Jazouli, M., Es-Sbai, N., Majda, A., & Zarghili,
A. (2017). Comparison between Euclidean and Manhattan
Distance Measure for Facial Expressions Classification.In 2017
International Conference on Wireless Technologies, Embedded
and Intelligent Systems (WITS) (pp. 1-4). IEEE.
[19]. Hertz, J. A. (2018). Introduction to the Theory of Neural
Computation. CRC Press.
[20]. Haykin, S. (2010). Neural Networks and Learning
Machines, 3/E. Pearson Education India.
[21]. Wanto, A., Windarto, A. P., Hartama, D., & Parlina, I.
(2017). Use of Binary Sigmoid Function and Linear Identity in
Artificial Neural Networks for Forecasting Population
Density. IJISTECH (International Journal of Information System
& Technology), 1(1), 43-54.

[22]. Sze, V., Chen, Y. H., Yang, T. J., & Emer, J. S. (2017).
Efficient Processing of Deep Neural Networks: A Tutorial and
Survey. Proceedings of the IEEE, 105(12), 2295-2329.

[23]. Wu, Y., Li, J., Kong, Y., & Fu, Y. (2016). Deep
Convolutional Neural Network with Independent Softmax for
Large Scale Face Recognition. In Proceedings of the 24th
ACM International Conference on Multimedia (pp. 1063-1067).

[24]. Dey, A. (2016). Machine Learning Algorithms: A
Review. International Journal of Computer Science and
Information Technologies, 7(3), 1174-1179.

[25]. Aloysius, N., & Geetha, M. (2017). A Review on Deep
Convolutional Neural Networks. In 2017 International
Conference on Communication and Signal Processing
(ICCSP) (pp. 0588-0592). IEEE.
[26]. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., &
Salakhutdinov, R. (2014). Dropout: a Simple Way to Prevent
Neural Networks from Overfitting. The journal of Machine
Learning Research, 15(1), 1929-1958.
[27]. Ioffe, S., & Szegedy, C. (2015). Batch Normalization:
Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In Proceedings of International Conference on
Machine Learning, 448–456.

[28]. Utkin, L. V., & Ryabinin, M. A. (2018). A Siamese Deep
Forest. Knowledge-Based Systems, 139, 13-22.
[29]. Marsland, S. (2015). Machine Learning: An Algorithmic
Perspective. CRC press.
[30]. Hadsell, R., Chopra, S., & LeCun, Y. (2006).
Dimensionality Reduction by Learning an Invariant Mapping.
In 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR'06) (2, pp. 1735-1742).
IEEE.
[31]. Bottou, L. (2010). Large-Scale Machine Learning with
Stochastic Gradient Descent. In Proceedings of
COMPSTAT'2010 (pp. 177-186).

[32]. Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013,
February). On the Importance of Initialization and Momentum in
Deep Learning. In International Conference on Machine
Learning (pp. 1139-1147).
[33]. Zou, F., Shen, L., Jie, Z., Zhang, W., & Liu, W. (2019). A
Sufficient Condition for Convergences of Adam and RMSProp.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (pp. 11127-11135).

How to cite this article: Ridha, J. A. and Saud, J. H.

(2020). Mutual Component Convolutional Siamese Network for

Heterogeneous Iris Recognition. International Journal on Emerging Technologies, 11(4): 282–291.

