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ABSTRACT: Iris recognition system is a special system employed to identify individuals according to their 
iris. The iris patterns are extremely randomized and unique. However, iris images captured by different 
sensors have heterogeneous characteristics. Matching heterogeneous iris patterns can degrade the rate of 
recognition and the system will not be as accurate as when all iris images are captured by the same sensor. 
Therefore it is a challenging issue to design a model that finds the matching between heterogeneous iris 
patterns. In this paper, a deep learning based framework, to address the issue of heterogeneous iris 
recognition, is presented. The framework termed as Mutual Component Convolutional Siamese Network 
(MCCSN), incorporates a learnable distance measure module into Siamese Neural Network (SNN) 
architecture, when the identical twin branches of this network are formed from a pre-trained Convolutional 
Neural Network (CNN), and sharing all parameters. Based on deep features extracted from input 
heterogeneous pairs simultaneously by the base CNN branches, the learnable distance measure module is 
designed to calculate the distance between heterogeneous iris patterns, and its parameters are learned 
according to the binary label attached with each pair during training process. The binary labels determine the 
similarity and dissimilarity between the iris images of each pair. The experiments showed that our MCCSN 
achieved 100% test accuracy and 0.07% test loss. 

Keywords: Convolutional  Siamese Network, Heterogeneous Iris recognition, Mutual Component Distance. 

I. INTRODUCTION 

The science of recognizing individuals based on their 
distinctive characteristics is called biometric. According 
to these characteristics, biometric systems are 
categorized as physiological, and behavioral. Behavioral 
biometric systems include all methods that depend on 
computation and data derived from an action, therefore 
indirectly measure the characteristics of the human 
body. Voice, keystroke and signature are considered 
behavioral characteristics. Physiological biometric 
systems comprise all methods that depend on direct 
computation of a specific part of person body. Iris, face, 
fingerprint, and DNA are considered physiological 
characteristics [1].  
Traditional methods adopted for personal identification 
can be classified into either knowledge-based methods 
or token-based methods. For example, knowledge-
based methods can use password created by the user 
for identification, whereas Identification (ID) cards are 
used by token-based methods. Nevertheless, traditional 
methods get unreliable if, for instance, the password is 
forgotten or the card is lost. Consequently, the demand 
for reliable identification methods becomes highly 
significant research area [2]. The iris is one of the most 
reliable biometrics used for security purposes. The 
human iris has extensively rich patterns. The details of 
iris texture are randomly determined for the human eye 
through the embryonic development, and they vary from 
one individual to another even between the right and the 
left eyes of the same individual. Moreover, the 
environmental impacts cannot change the texture of the 
iris [3]. 

Although iris recognition is relatively modern field, the 
progress in this field has been so fast and effective. The 
approaches to adopt machine learning methods are 
even more modern. One of the effectively used machine 
learning techniques in iris recognition systems is 
Artificial Neural Network (ANN) [4]. 
Over past years, sensors for obtaining iris images had 
significant changes, by upgrading existing sensors and 
developing new ones [5]. When the iris images are 
obtained by different sensors, the recognition rate will 
be degraded due to heterogeneity of iris patterns. 
Therefore, the performance of the recognition system 
will not be as accurate as when all images are obtained 
by the same sensor. Such issue is called “cross-sensor 
iris recognition” [6] or “heterogeneous iris recognition” 
[7]. The variation among different types of iris sensors 
such as optical lens, illumination wavelength and image 
resolution causes heterogeneous characteristics of iris 
patterns, as a result, heterogeneous iris recognition is 
rising as a significant issue [8]. 
The reliability of iris recognition system is considered 
the motivation of this paper. The iris recognition system 
is highly useful for several applications of computer 
vision. The iris patterns have many advantageous that 
make the iris recognition system one of the most reliable 
biometric systems. Moreover, the iris is highly protected 
since it is an internal organ of the eye. It is also 
considered relatively stable feature over lifetime. 
The main contributions of this paper can be summarized 
into the following points: 
— Design of a robust model based on Siamese 
architecture of neural networks, where the parameters 
of this model are shared between heterogeneous iris 
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samples and initialized simultaneously. These sharable 
parameters can help to decrease the error rate since the 
difference will be only between the inputs.   
— Design of a learnable distance measure module to 
decrease the distance between the heterogeneous iris 
samples of same subject and increase the distance 
between the heterogeneous iris samples of different 
ones. 
— Time reduced by applying transfer learning 
technique.  
The identical branches of proposed model are formed 
from a pre-trained model, where these branches are 
frozen during training the proposed model. 

II. LITERATURE SURVEY  

The amount of publications that address the problem of 
heterogeneous iris recognition is little. Garea Llano et 
al., [9] proposed a cross-sensor iris verification system 
for iris images acquired by different sensors, by applying 
fusion methods at the level of segmentation stage. Their 
system comprises capturing one or more images of the 
iris for the same subject by multiple sensors, and, then, 
applying at least two segmentation algorithms to localize 
the pupil and iris boundaries. Liu et al., (2016)  
proposed a deep learning based framework called 
DeepIris, for heterogeneous iris verification. Their model 
contains a layer called pairwise filter layer, which takes 
pairs of heterogeneous iris images as input, where a 
couple of  pairwise filters convolve the input images and 
summarize their feature maps to generate the similarity 
map [10]. Their experimental results have shown that 
the suggested method achieves promising performance 
for both cross-sensor and cross-resolution iris 
verification. Gangwar and Joshi (2016) also proposed a 
deep learning based method for iris representation [11]. 
Their model named as DeepIrisNet, is constructed 
based on deep Convolutional Neural Network (CNN) 
architecture. The experiments showed that the deep 
architecture of CNN can represent the micro-structures 
of iris patterns effectively. Nalla  and Kumar (2016) 
proposed a domain adaptation framework, based on the 
nearest neighbor classification, to address the cross-
domain (cross-spectral/cross-sensor) iris recognition 
issue [12]. Their experiments showed that the 
improvement in the performance of proposed model in 
the cross-spectral iris recognition is higher in 
comparison with the performance of the cross-sensor 
iris recognition. Liu et al., (2017) proposed  a code-level 
approach in heterogeneous iris recognition [8]. Their 
model transforms the number of iris templates in the 
probe into a homogenous iris template based on gallery 
sample.  

Table 1: Summary of related work on heterogeneous 
iris recognition. 

Ref. Year Framework Accuracy% 

[9] 2015 
Fusion-based method at the 
level of  segmentation stage 

96.1 

[10] 2016 
Deep learning based 

method 
95 

[11] 2016 
Deep learning based 

method 
98.78 

[12] 2016 
Domain adaptation 

approach 
89.92 

[8] 2017 Code-level approach 98.74 

 

The model is experimented on matching cross-sensor, 
high-resolution versus low-resolution and, clear versus 
blurred iris images. Table 1 provides a summary of all 
discussed related works for heterogeneous iris 
recognition problem. 

III. METHODOLOGY 

In this section, the general concepts of iris recognition, 
neural networks and deep learning, that address the 
problem of heterogeneous iris recognition, are 
explained. 

A. Iris Recognition System 
Iris recognition system is a special system used to 
recognize individuals based on their distinctive iris 
patterns. The system is constructed, after iris image 
acquisition, from four main parts: iris segmentation, iris 
normalization, feature extraction and recognition 
(matching) [13]. In segmentation stage, the iris and pupil 
boundaries are localized and the region between them 
is segmented. Then, the segmented region is 
transformed from Cartesian coordinates to polar 
coordinates, producing a fixed rectangular region during 
the normalization stage. Feature extraction draws out 
the biometric templates from normalized image and 
finally, matching these templates strictly. Fig. 1 shows 
the block diagram of iris recognition stages. 

B. CNN based feature learning 
Iris has a unique texture for each individual. This texture 
represents the patterns of the iris. Feature extraction 
methods extract these patterns in an iris image. Several 
methods have been developed for effective feature 
extraction, such as Gabor filter, Log-Gabor Filter, 
Discrete Cosine Transform, Discrete Wavelet 
Transform, and Contourlet Transform [14].  
Currently, much attention is paid to CNN based feature 
learning method in which, the image is fed to the CNN, 
then the feature learning algorithm extracts the features 
of input image directly [15]. Modern deep CNNs 
revealed a phenomenon that when these networks 
trained on images their first convolutional layers tend to 
learn features that are similar to Gabor filter features 
[16]. 

 

Fig. 1. Block diagram of iris recognition stages [17]. 

C. Manhattan Distance (MD) 
Iris matching means finding similarity between iris 
templates generated from feature extraction stage. One 
of matching methods that has the least computational 
complexity is Manhattan Distance (MD). The MD metric 
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computes the distance between two points along axes 
at right angles. The MD between two vectors is the sum 
over absolute differences between their components. It 
is an alternative measure to Euclidean Distance (ED), 
used to reduce the computational complexity. The MD is 
0 for vectors that are exactly the same, otherwise is 
more than 0 To compute the distance between two iris 
feature vectors, the MD function is expressed as follows 
[18]: 

 �� =  ∑ ���	
 − ��	��	�
  (1) 

where x���
  and x���� are the components of vectors x��
 and 

x��� respectively, and N is the length of the vectors.  

D. Artificial Neural Network (ANN) 
ANN is an alternative computational model to the 
instruction based programming, designed to simulate 
the human's brain. Although ANNs are inspired by 
neuroscience, they are not biologically in detail. The 
methods of ANN are highly drawn from statistical 
physics [19]. ANN consists of a number of simple 
processing units each one called neuron, these neurons 
are operating in parallel, communicating by distribution 
signals to neurons in other level over a large number of 
weighted connections. The connections are adapted 
during training through associated weights to get better 
performance just like human brain. Each neuron applies 
a nonlinear function usually called activation function to 
its input signal to obtain output signal. Mathematically, 
the output on the neuron j  can be expressed as follows 
[20]: 
  ν� = ∑ �	 . ��	 + ���	�
  (2) 

 �� = ����� (3) 

where x� represents the input signals, w�� represents the 

associated weights of neuron j , b� denotes the bias 

value which is an additional parameter used to adjust 
the output, and φrepresents the activation function. 

E. Activation Function 
Activation function takes the output of the summing 
function ν� as input and defines the output of neuron y�. 
The activation functions can be linear or non-linear. The 
activation functions adopted in proposed approach are 
explained below: 
1) Sigmoid function: Sigmoid function is the most 
commonly used activation function in ANNs. It squashes 
output values between 0 and 1. Therefore, it is 
considered the best choice for neural networks of output 
value ranging from 0 to 1. Sigmoid function can be 
described in mathematical form as follows [21]: 

 �� = 


#$%&  (4) 

2) Rectified Linear Units (ReLU): ReLU is a threshold-
based activation function. It simply outputs 0 when 
 �� ≤ 0 and outputs a linear function when  �� >
0 Mathematically, the function can be expressed as 
follows [22] 
 �� = *+�(0,  ��) (5) 

3) Softmax: The softmax function is commonly used in 
multiclass classification neural networks. It takes as 
input a vector of / real numbers, and outputs a vector 
of 0 probabilities, where the 1-2ℎ value in the output 
vector corresponds to the 1-2ℎ class in the input vector. 
This function can be expressed as follows [23]: 

 4(5	) = $67
∑ $6&8&9:

 (6) 

where  5	  represents the probability of 
class 1 and / denotes the total number of classes. 

F. Supervised Learning 
Supervised learning algorithms are one of the machine 
learning algorithms in which the desired output is 
encoded with training dataset and the algorithm learns 
the patterns based on the target output encoded. 
Supervised learning is commonly used in classification 
problems, where the algorithm learns from the training 
dataset and applies classification or prediction on the 
test dataset [24].  

G. Deep Learning 
Recently, large datasets and the increasing of 
computing power have become easily available. 
Consequently, scaling up machine learning systems to 
be more powerful has become possible. In the context 
of neural networks, deep learning means that the 
network has more than one hidden layer. Nowadays, 
the numbers of layers used in deep learning range from 
five to more than a thousand [22]. 

H. Convolutional Neural Network (CNN) 
CNN is the commonly used deep network form which 
was inspired by animal's visual cortex. They are widely 
used in several domains, such as object recognition, 
object tracking, pose estimation, text detection and 
recognition, visual saliency detection, action recognition, 
scene labeling, and many more [25]. CNN is mainly 
composed of multiple convolutional layers, pooling 
layer, and Fully Connected (FC) layers as shown in Fig. 
2. Each convolutional layer generates a consecutively 
higher-level abstraction for the input data, called a 
feature map, which conserves unique information [22]. 
In addition to fundamental layers, some special layers 
can be added to accelerate the performance of CNN 
such as, Dropout layer [26], and Batch Normalization 
(BN) layer [27]. These layers are discussed next. 

 

Fig. 2. Common CNN architecture [16]. 

1) Convolutional Layer: Convolutional layer represents 
the key unit of CNN. It is simply, a set of neurons 
arranged to form the feature maps. The parameters are 
set of learnable filters convolving with the input feature 
map to generate a separate two dimensional activation 
maps stacked together, producing the output feature 
map. Neurons of the same feature map share the 
parameters; therefore, the network complexity is 
reduced by reducing number of parameter [25]. 
2) Polling Layer: Pooling is a computational operation 
that reduces the dimensionality of feature maps. Pooling 
increases the network robustness and enables it to be 
invariant under distortions and small shifts. In pooling, a 
set of values within a receptive field are grouped into a 
smaller number of values, according to the pooling form 
(max or average pooling) and the size of its receptive 
field. Typically pooling is performed over on non-
overlapping blocks where the stride size is equal to the 
pooling size [22].  
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3) Fully Connected (FC) Layer: FC layer is also called 
Multi-Layer Perceptron (MLP). In this layer, neurons are 
arranged in one dimension and fully connected to all 
neurons in the preceding layer, as in traditional 
networks [25]. Usually, a small number of FC layers are 
added after the convolutional layers for classification 
task [22]. 
4) Dropout Layer: Several approaches have been 
presented to reduce overfitting neural networks. One of 
these methods is Dropout technique, which prevents 
overftting problem and provides a way to combine many 
different architectures of ANN efficiently. The term 
Dropout means dropping out (temporarily removing) 
randomly chosen units in a neural network, along with 
all their connections [26].  
5) Batch Normalization (BN) Layer: BN is a technique 
used to reduce the phenomenon of Internal Covariate 
Shift (ICS),  based on normalizing each feature in layer 
inputs, by making it have the mean of zero and the 
standard deviation of 1 [27]. 

I. Siamese Neural Network (SNN) 
SNN is metric learning neural network with two identical 
neural network branches of shared weights initialized 
and update simultaneously during training [29]. In SNN, 
the network branches are responsible for feature 
extraction from the inputs, while the joining layer learns 
the metric between the extracted feature vectors. With 
this characteristic, SNN has been used in several 
application with many modifications have been 
developed [28]. Fig. 3 shows an abstract architecture of 
the SNN. 

 

Fig. 3. Abstract architecture of SNN  [29]. 

J. Training of Feed-forward Neural Network (FNN) 
In general, training the FNN comprises two main 
consecutive parts: the forward pass when the outputs 
are configured according to the given inputs and the 
current parameters, and the backward pass when the 
parameters are updated according to the error [29]. 
1) Forward Pass: Forward pass is the easy part of 
training process in which the activation of each neuron 
in one layer is computed according to the neuron inputs 
and learning parameters, and then those activations are 
used as the inputs for the next layer where the 
activations are computed according to next layer 
parameters, and so on until the final output of network is 
obtained [29]. 
2) Computing the Error: The error is simply a function 
of difference between the outputs and the targets [29]. 
Several functions are used to compute the error of the 
networks. These functions are called loss or cost 
functions. The loss functions used in proposed 
approach are clarified bellow: 
a) Cross Entropy Loss (CEL): CEL loss function is 
widely used in classification field. Mathematically, it can 
be expressed as fallows [29]: 

 ℒ = − 

� ∑ <2= ln �= +  (1 − 2=) ln(1 − �=)A�=�
  (7) 

where B is the total number of training samples, tFis the 
target value and yF is the output value. 

b) Contrastive Loss (CL): CL loss function is highly 
useful in Siamese networks. Unlike traditional loss 
functions, such as CEL, where the error is computed as 
a sum over samples, the CL function computes the error 
over pairs of samples. This function can be written as 
fallows [30]: 

 ℒ = (1 − �) 

� (G�)� + (�) 


� <*+�(0, * − G�)A�(8) 

where  y is the similarity label,  m > 0 is a margin, 
and  G� denotes the Euclidean Distance between the 
outputs of SNN branches. 
3) Backward Pass: The method in which the errors are 
sent backwards through the network is called Back 
Propagation (BP) of error. BP algorithm is used to 
compute the gradient in weight space of FNNs. It is 
about understanding how the cost function is sensitive 
to the adjustment of the weights in a network [29]. 

K. Training Optimizers 
Actually, the loss function, used in BP is an average 
over loss functions for individual samples. This means 
the gradient is an average over gradients computed 
separately, for each input. When dealing with large 
number of training samples, this strategy can be, 
significantly time consuming, thus learning gets slower. 
An idea to speed up learning regardless the number of 
training samples is to consider the gradient by 
computing the loss for a mini batch of randomly chosen 
training samples. This method is termed as Stochastic 
Gradient Descent (SGD) [31]. A variation of SGD, called 
Momentum-based SGD [32], is used to accelerate the 
original algorithm and reduce the oscillations around 
local minima that appear with SGD, via using a velocity 

vector generated by adding a fraction to the gradient 
vector, and then using this vector to update the weights 
instead of the original gradient vector. An adaptive 
gradient algorithm called Root Mean Square 
Propagation (RMSProp) [33], is used to make the 
convergence easier by using adaptive learning rate 
through dividing gradient values by the root of squared 
gradient.  

L. Transfer Learning 
The transfer learning means training a base network on 
base dataset and task, and then transferring the learned 
feature layers to another network called target network 
to be trained on new target dataset and task. Usually, 
this is done by choosing the first n layers of the trained 
base network to be the first n layers of the new target 
network. Then, additional layers are added to the target 
network proportional to the new target task. The 
additional layers of the target network are the only 
layers that are trained toward the target task, while the 
transferred feature layers are left frozen, meaning that 
the error is propagated into additional layers only [16]. 

IV. PROPOSED SYSTEM 

The framework for proposed heterogeneous iris 
recognition system is shown in Fig. 4. This framework 
comprises three phases: the CNN training phase, 
Mutual Component Convolutional Siamese Network 
(MCCSN) training phase, and MCCSN testing 
(identification) phase. All phases share the fundamental 
preprocessing module of the system. In CNN training 
phase, the base CNN is trained for feature learning. 
During this phase, the parameters are automatically 
learned and employed to extract feature vectors of input 
iris images during MCCSN training phase, where two 
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branches constructed from the base CNN are used for 
input pairs. In MCCSN training phase, the model learns 
the similarity and dissimilarity between feature vectors 
of each input pair. The parameters for learnable 
distance measure function of MCCSN are adapted and 
used for learnable matching process during 
identification phase. The architecture of MCCSN is of 
SNN architecture type in which the parameters of both 
CNN branches are shared. 

 

Fig. 4. The framework of proposed system. 

A. Preprocessing Module 
The preprocessing module consists of four main stages: 
iris segmentation, normalization, image enhancement, 
and finally, selecting Region of Interest (ROI) from the 
lower half of iris, which is relatively noise free. The input 
of this module is the iris image and the output is a noise 
free ROI. 

B. The Architecture of MCCSN 
The two branches of MCCSN are formed from a pre-
trained base CNN. These branches are responsible for 
feature extraction process based on what feature 
learning that the base CNN gained during training for 
classification. The output vectors of two branches are 
combined and passed to the Mutual Component 
Distance (MCD) layer to compute the distance between 
mutual components of feature vectors, and then the 
resultant vector is passed through three of FC layers to 
decrease the error. Next layer is BN layer to enhance 
the training process. Finally, the distance is measured 
by the weighted sum layer and the result is squashed 

between 0 and 1 by using sigmoid function, Fig. 5 
describes the MCCSN architecture. 

 

Fig. 5. The architecture of MCCSN. 

1) The Architecture of Base CNN: The base CNN 
consists of a set of convolutional layers with filters of 
varying size and stride of 1. The activation function 
applied in all convolutional layers is a ReLU function. 
The convolutional layers are optionally followed by max-
pooling layer with filter size of 2 and stride of 2. The last 
layer before the output layer is a flatten layer which 
reshapes the convolutional feature map to a feature 
vector. The BN layer is added to reduce ICS, and 
dropout layer is used to prevent the network from 
overfitting. The output layer is FC layer activated by 
softmax function. The base CNN is designed deeply and 
carefully. The output feature maps before flatten layer 
are one dimensional, so that the flatten layer just 
rearranges them without changing their shapes.  Table 
2 states the base CNN layers where the preprocessed 
image is passed through them. The output shape of 
input, convolutional, and pooling layers is described in a 
three dimensional form of (height × width × depth), 
whereas the output shape of flatten and later layers is 
described in a one dimensional form.  
2) Mutual Component Distance (MCD) Layer: Images 
obtained by different sensors can have heterogeneous 
characteristics. Using one of distance measure 
functions to match between such images can result in 
false recognition. The main idea of MCCSN is to create 
a learnable distance measure function to learn the 
similarity and dissimilarity between heterogeneous iris 
images. The distance measure function chosen to be 
learnable is the MD function that has been expressed in 
Eq. (1). The first step to create such learnable function 
is by breaking apart Eq. (1) into two steps, as follows: 

 *��� = |��	
 − ��	�| (9) 

 �� = ∑ *���	�	�
  (10) 

The components of the MCD vector m����  represent the 
absolute differences between the mutual components of 
feature vectors corresponding to the input pair. Eq. (9) is 
implemented in MCD layer where the inputs of this layer 
are the feature vectors generated by the identical 
branches of MCCSN, simultaneously. Eq. (10) is 
postponed to the weighted sum layer in order to 
reformulate it as a learnable function.  
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Table 2: The proposed base CNN layers. 

Layer Activation Stride Output shape 

Input – – 48 × 210 × 1 

Convolution ReLU 1 44 × 206 × 32 

Convolution ReLU 1 40 × 202 × 32 

Convolution ReLU 1 37 × 199 × 64 

Convolution ReLU 1 34 × 196 × 64 

Pooling – 2 17 × 98 × 64 

Convolution ReLU 1 15 × 96 × 128 

Convolution ReLU 1 13 × 94 × 128 

Pooling – 2 6 × 47 × 128 

Convolution ReLU 1 4 × 45 × 256 

Convolution ReLU 1 2 × 43 × 256 

Pooling – 2 1 × 21 × 256 

Flatten – – 5376 

BN – – 5376 

Dropout – – 5376 

FC Softmax – 108 

3) FC Layers: Applying weighted sum over MCD vector 
components directly increases the error rate. In our 
proposed system, three of FC layers are used to 
decrease the error. These layers act as dimension 
reduction layers, since the size of MCD vector m����  is 

reduced while it is passed through them, generating  *����� ′. 
The activation functions of all these layers are ReLU. 
4) BN Layer: Passing the MCD vector through FC 
layers makes the impact of ICS phenomenon appear 
again. Since the output of MCCSN model is ranging 
between 0 and 1, it is necessary to adopt a BN layer 
after the FC layers to reduce this impact, thus help the 
model to converge faster. 
5) Weighted Sum Layer: In the weighted sum layer, 
Eq. (10) is reformulated to be in learnable form. This 
operation is inspired by the foundation of ANN, which is 
the neuron. The mathematical form of the neuron is 
expressed in Eq. (2) which is just a summation over 
elements that are multiplied by weights and adjusted by 
bias value, as well Eq. (3) which represents the 
activation function to generate the final output. Based on 
the above, the weighted sum over all components of the 

vector *���′can be expressed as follows: 

 ��J = K *���	
′

�

	�

. �	 + � (11) 

By this equation the second step of original MD distance 
function is written as a learnable function. Since the 
desired output is 0 for similar pairs and 1 for dissimilar 
pairs, the computed distance is activated by a sigmoid 
function σ to squash output between 0 and 1 as follows: 
 � = σ(��J) (12) 
During MCCSN training phase, the learning parameters 
are updated according to the desired output associated 
with each pair, repeatedly until convergence. 

C. Generating Multiplicative Dataset 
Dealing with dataset that consists of images acquired by 
different sensors gives an opportunity to expand it by 
applying Cartesian product. Let A be the set of sample 
images for a given subject, obtained by sensor1, B the 
set of sample images for the same subject obtained by 
sensor2, and C the set of sample images for other 
subjects, obtained by sensor2 so that C is  equivalent to 
B. The Cartesian product of A and B, denoted by A × B, 
is the set of all similar pairs (a, b) where a is a member 
of A and b is a member of B. The Cartesian product 

of A and C, denoted by A × C, is the set of all dissimilar 
pairs (a, c) where a is a member of A and c is a member 
of C. The union of A × B and A × C, denoted by (A × B) 
∪ (A × C), represents the final dataset which contains all 
similar and dissimilar pairs. The steps for generating 
multiplicative dataset are described in Algorithm 1. 

Algorithm 1: Generating Multiplicative Dataset 

Input: Subset1     // dataset of sensor 1 
 Subset2     // dataset of sensor 2 
Output: pairs[] // similar and dissimilar pairs 
 labels[] // similarity indicating labels 
Begin 
for L= in (subset1) // all subjects in dataset1     
 for+	 in (L=) // all elements of set A 

  forb� in (BF) // all elements of set B in dataset2 

   similar[] ← (a�, b�)  

  end for  

  forb� in (BF) // all elements of set C in dataset2 

   dissimilar[] ← (a�, c�)  

  end for  
 end for 
end for 
for all similar and dissimilar pairs     
 pairs[] ← [similar[] , dissimilar[]] // arrange pairs 

alternatively  labels[] ← [0 , 1] 
end for  
End 

D. Training Schedule 
The training schedule comprises two phases: CNN 
training for feature learning purpose, and MCCSN 
training for distance learning purpose. The pixel values 
of iris images in both phase, are simply scaled down to 
the range between 0 and 1 via dividing each pixel value 
by 255. This can help in reducing training time. 
1) CNN Training Phase: In CNN training phase, the 
base CNN is trained on iris images for classification. 
While the model is classifying the inputs it learns the 
features of different samples. Each input image is 
shifted by two pixels to the right, down, and to the right 
and down together, to create three additional samples 
from each one. This can effectively accelerate the 
feature learning process. The input images are firstly 
subjected to preprocessing module. The training 
parameters are updated by using momentum-based 
SGD and RMSprop to choose the most effectively 
transferred learning between the two optimizers. The 
gradient is computed through the CEL function. The 
training is stopped after some epochs when the loss 
stops decreasing to ensure the model generalization 
and prevent from overfitting with the assistance of 
dropout operation.  
2) MCCSN Training Phase: In MCCSN training phase, 
similar and dissimilar pairs are fed to MCCSN model 
alternatively, with a binary label indicating their 
similarities. The identical branches created from the 
base CNN are frozen and the learnable parameters are 
initialized simultaneously to generate feature vectors. 
The feature vectors are obtained from the dropout layer 
of the base CNN and the output layer is neglected for 
new target task. The vectors then, passed through 
MCCSN layers, to compute the distance between the 
vectors of each pair. The parameters are updated 
according to the binary label value attached with each 
pair, if the label is 0 then the parameters are updated to 
decrease the output, and if the label is 1 then the 
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parameters are updated to increase the output. These 
parameters are updated by using RMSprop. The 
gradient is computed by using the modified CL function. 
The modification comprises replacing the ED by 
σ(MDw). As in CNN training phase, the training is 
stopped after some epochs when the loss stops 
decreasing. Only the parameters of FC layers and 
weighted sum layer are updated during training while 
MCD layer just calculates the absolute difference 
between mutual components of feature vectors and has 
no learnable parameters. The training procedure of 
MCCSN is briefly described in Algorithm 2. 

Algorithm 2: MCCSN Training 

Input: (I
1
i, I

2
i ) // training image pairs  

 yi // similarity indicating label 
Output: Similarity score and learnable parameters 
Begin 
Initialize all parameters using pre-trained base CNN 
While not converge do:  
 Input image pairs and get feature vectors 
 Input feature vectors to MCD layer and get *��� 
 Pass MCD vector to FC layers and get *���P ′ 
 Apply BN 
 Compute MDw 

 Squash MDw using sigmoid function 

 

Ifyi= 0 then 
 update W to decrease MDw 
else 

 update W to increase MDw 
end if 

end while 
End 

E. MCCSN Testing 
To test the trained MCCSN model, the system takes the 
input iris image obtained by sensor1 and creates image 
pairs with all images in the dataset of images obtained 
by sensor 2, where the first image in all pair is the input 
image. The learnable parameters of CNN are used to 
generate feature vectors, while the learnable 
parameters of MCCSN are used to compute the 
distance between the sample images of each pair. The 
output of the model is ranging between 0 and 1, which 
represents the squashed value of distance. The similar 
pairs have a distance close to 0, and dissimilar pairs 
have a distance close to 1. Based on a predefined 
threshold, the system returns the person identity that 
has minimum distance with input image, otherwise, 
returns unknown person. 

V. RESULTS AND DISCUSSION 

Since we adopted the transfer learning technique in this 
approach, two datasets are employed in this 
experiment: CASIA Dataset Version 1.0 (CASIA V1.0) 
which is used in the CNN training phase and CASIA 
Dataset Version 2.0 (CASIA V2.0) which is used in the 
MCCSN training phase. All images of both datasets are 
in bitmap (*.bmp) format. Table 3 summarizes the 
characteristics of both datasets. 
The experiments have been carried out under the 
environment of Windows-7 64-bit operating system, 
laptop computer processor: Intel Core i7 CPU, 2.80 
GHz, and (4GB) RAM. 

Table 3: The The characteristics of CASIA V1.0 and CASIA V2.0. 

Characteristics CASIA V1.0 
CASIA V2.0 

Device 1 Device 2 

Sensor Homemade CASIA close-up iris camera OKI IRISPASS-h CASIA-IrisCamV2 

Environment Indoor Indoor Indoor 

Session Two one one 

No. of classes 108 60 60 

No. of images per class 7 20 20 

Resolution 320×240 640×480 640×480 

A. Preprocessing 
Fig. 6 shows the results of preprocessing module. The 
size of normalized image is (420×60), whereas the size 
of ROI is (210 × 48). 

 

Fig. 6. Preprocessing  of sample iris images, (a) CASIA 
V1.0, (b) sensor1 of CASIA V2.0,  and (b) sensor2 

of CASIA V2.0. 

B. Training the Base CNN 
The base CNN is trained on the classification of CASIA 
V1.0 images. After applying shifting on the images of 
dataset, the result was three samples plus the un-
shifted one. As a result, the number of samples for each 
class became 28, where 23 of them are used for training 
and remaining 5 for testing. The total number of dataset 
images is 3024. The categorical CEL is used to 
compute the cost during training process. The 
momentum-based SGD with momentum value of 0.9 
and RMSProp are adopted to train the model with the 
same initial learning rate of 0.001. The learning rate in 
both experiments is reduced by the factor value of 0.5 
when the loss stops to decrease. The model is trained 
with batch size of 128. Table 4 lists the hyper 
parameters and the model accuracy and loss by using 
both momentum-based SGD and RMSProp optimizers. 
Both models have the same accuracy, while there is a 
small difference in loss which is 0.0092. Fig. 7 shows 
the plot of loss and accuracy for test dataset in both 
experiments. 
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Fig. 7. A comparison between using momentum-based SGD and RMSProp for training the base CNN, (a) the plot of 
accuracy, and (b) the plot of loss.

Table 4: Base CNN Accuracy and Loss with Corresponding Hyperparameters. 

Batch size 
 

learning rate Loss 
function 

Optimizer Loss% Accuracy% 
Initial value Reducing factor 

128 0.001 0.5 CEL RMSProp 2.19 100 

128 0.001 0.5 CEL SGD 1.27 100 

Table 5: MCCSN Model Accuracy and Loss With Corresponding Hyperparameters 

Batch size 
 

learning rate Loss 
function 

Base 
Optimizer 

Loss% Accuracy% 
Initial value Reducing factor 

128 0.00004 0.9 CL RMSProp 5.41 92.50 

128 0.00004 0.9 CL SGD 0.07 100 

C. Training the MCCSN 
The advantage of feature learning that the base CNN 
has acquired during training for classification is adopted 
to extract feature vectors of each input pair 
simultaneously during MCCSN training phase. This is 
done by discarding the last layer of the base CNN which 
is the classification layer since the new target task is 
extracting features. The base CNN branches are frozen 
during the training process of MCCSN. The trainable 
part of MCCSN begins after MCD layer. The set of FC 
layers including the weighted sum layer are trained on 
CASIA V2.0, after being rearranged as similar and 
dissimilar pairs by using Cartesian product and fed 
alternatively to the model. The modified CL function is 
used to compute the cost during training process. The 
RMSProp is adopted to compute the gradient. A small 
initial learning rate value of 0.00004 is used with 
reducing factor value of 0.9 when the loss stops to 
decrease. The model is trained with batch size of 128. 
Table 5 lists the hyperparameters and the model 
accuracy and loss by using both versions of base CNN. 

 

Fig. 8. A comparison between using the two versions of 
base CNN to initialize MCCSN, (a) represents the plot of 

accuracy, and (b) represents the plot of loss. 

Although both versions of base CNN have same 
accuracy and small difference in loss, using the model 
learned with momentum-based  SGD  to form  MCCSN 

branches gave accuracy of 100% and loss of 0.07%, 
while using the model learned with RMSProp gave 
accuracy of 92.50% and loss of 5.41%. This means that 
the first model has the feature learning advantage over 
the later one. Fig. 8 shows the plot of loss and accuracy 
for test dataset in both experiments. 

D. The Time Reduced Using Transfer Learning 
The time reduced by using transfer learning technique 
can be obtained by first, calculating the time consumed 
during training the base CNN model. This means 
multiplying the number of epochs by the time per one 
epoch. As expressed below: 
QRRSTSUV S	W$ = QRR$XTYZ[ × QRR$XTYZ S	W$            (13) 

Then, the total time calculated by Eq. (13) is divided by 
the number of epochs expended during MCCSN training 
phase. The resultant value represents the share time 
added to each epoch time of MCCSN training phase 
when using transfer learning technique i.e. when the 
CNN branches are frozen. This value represents the 
total time for one epoch of MCCSN training. 
Mathematically, this is expressed as follows: 

  
(14) 

The time saved with transfer learning strategy can be 
estimated by comparing the value computed by Eq. (14) 
with the epoch time consumed without using transfer 
learning technique. This is done by calculating the 
difference between the two values. For instance, the 
total epoch time in minutes for training the MCCSN by 
using RMSProp with learning rate of 0.00004 and the 
base CNN trained with momentum-based SGD with 
learning rate of 0.001, is calculated as follows: 
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The experiment showed that time consumed in one 
epoch during training the MCCSN model without using 
transfer learning is 46.25 minutes. By computing the 
difference between this value and the value calculated 
in Eq. (14), which is 34.38, the result we get is 11.87 
minutes. This is the time reduced for only one epoch. 

E. Testing the MCCSN 

Fig. 9 shows the distance measure between 36 pairs of 
iris images. The image samples of the first row belong 
to the subset of sensor1, the image samples of the first 
column belong to the subset of sensor2, and the 
intersection of the row with the column represents the 
distance between the samples. 

 

 

 

 

 

 

 

Fig. 9. Distance measure between some image samples, arranged in pairs where the images in these pairs are 
obtained by different sensors. 

F. Comparing Proposed MCCSN with Other Methods 
We conclude the evaluation of our MCCSN by 
comparison with the latest frameworks discussed in 
literature survey. Table 6 lists the models with their 
accuracies. 

Table 6: A Comparison of MCCSN with other 
Frameworks. 

Framework Accuracy% 

DeepIrisNet (2016) [11] 98.78 

Code-level approach (2017) [8] 98.74 

MCCSN 100 

VI. CONCLUSION 

In this paper we have presented a deep learning based 
approach to address the issue of heterogeneous iris 
recognition, based on the architecture of CNN and SNN. 
CNN based feature learning is an effective method to 
extract the features of the input image directly fed to the 
network. SNN is a robust metric learning neural network 
with two identical branches. However, training a network 
with two or more branches would increase time 
complexity of training process. Using transfer learning 

technique can reduce the time complexity by freezing 
the branches during training and using their prior 
knowledge. Searching for hyperparameters that fine-
tune the network is the most difficult aspect of 
establishing a network. It can be performed by carefully 
testing sets of hyperparameters that should maximize 
the effectiveness of the learning method. The 
experimental analysis indicated that the highest 
recognition accuracy can be achieved if the base CNN 
is trained by using momentum-based SGD with learning 
rate of 0.001 reduced by the factor of 0.5, and the 
proposed MCCSN is trained by using RMSProp with 
learning rate of 0.00004 reduced by the factor of 0.9.  

VII. FUTURE SCOPE 

This work can be expanded in different directions. Some 
ideas for future works are suggested below: 

• Training the base CNN on a larger dataset for further 
performance enhancement, thus, ensuring the 
generalization of proposed CNN. 

• Applying proposed MCCSN on cross-spectral 
environment where the iris images are obtained by 
near-infrared versus visible illumination. 
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• Applying proposed MCCSN on other biometrics, or 
even on other fields of pattern recognition. 
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