
Iyyappan et al., International Journal on Emerging Technologies 10(1): 211-217(2019) 211

International Journal on Emerging Technologies 10(1): 211-217(2019)

 ISSN No. (Print) : 0975-8364
 ISSN No. (Online) : 2249-3255

Optimization of Software Package Selection using Cohesion Measurement and
Complexity Metric for CBSS Development

Iyyappan M.
1
 and Arvind Kumar

2

1
Department of Computer Science & Engineering,

SRM University, Sonepat (Haryana), India.
2
Department of Computer Science & Engineering,

SRM University, Sonepat (Haryana), India.

(Corresponding author: Iyyappan M.)
(Received 10 April 2019, Revised 06 June 2019, Accepted 12 June 2019)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Component based software engineering play a vital role for the development of software
because its supports higher level of program code and system level of maintenance. CBSE is concerned
about the building of software which is able to satisfy a client-specific requirements with the use of reuse or
independent development. For metric measurement of software using the various factors like a complexity,
quality and reliability. Coupling and cohesion measurement are mainly used for analysing the better quality
of software design, increased reliability of high cohesion & low coupling and reduced the complexity of the
system software. Complexity metrics are mainly concern about the calculating the relationship between
software packages, group of classes and Sub classes of methods. To show the improving aspects of
software system like a reduced complexity and increased higher reliability. The software packages of
reusable components are related together of classes and methods, for supporting the enhanced technology
object oriented programing languages of software systems. To promote reuse of Component based software
engineering in object oriented system mainly focus on the development, implementation and maintenance
phases. To make a phases for easy understanding by the user with cohesive measurement of packages,
classes and methods. Quantification value & analysis method of cohesion metric, for the software packages
can be very useful for assessing their component reusability, quality, complexity and reliability etc. In this
modules, a new set of metric calculation are approached for the complexity of low cohesion and complexity
of high cohesion of the software package, classes and methods are proposed. High cohesion and low
cohesion measurement using degree of inter-dependence among the package of module. The hierarchical
structure of the package relation among the elements, classes and methods are used for measurement. The
proposed cohesion metric of real data set values has been analysed theoretical as well as experimental result
also observed the optimized result for better performance of software system. An empirical study has been
conducted using 25 various software packages, it has been taken from the six different free-source code of
java programming used for the software projects developments. The proposed package of the, complexity of
low and complexity of high cohesion measurement is found to be improved result of the quality factor as well
as optimized line of code for reusability packages. This result comparatively better than the existing cohesion
measurement of reusable in component based software engineering.

Keywords: Cohesion component, Metrics measurement, Improved quality, Better reusability, Software packages,
System complexity – Low, High, Object oriented programming languages, Component Based Software Engineering.

I. INTRODUCTION

In the software development for the system
maintenance mainly focus on the cost. Cost depends on
the quality of the system and complexity of the system
[1]. Analysing and Design efforts [2] are not useful on
the phases of maintenance because it has a more
complexity and less reliability of the system. So before
moving to the implementation process better analyse
the complexity and reliability of the system. In hierarchy
process of object oriented system for the packages
mainly focus on the Classes and methods. For the
metrics measurement of the cohesion are used
packages and its various elements of the classes or
interfaces [3]. Cohesive packages provide a complete
structure for the classes to make a proper functionality
which helps to maintain the system and increase
reusable of the system. In object oriented programming
languages mainly focus on the classes, attribute and
operation all are related to the packages. The packages
will provide the major entities is a type of concrete
relationships of class entities [4, 5]. The paper mainly

focus on the metrics measurement and reliability
measure for the implementation of component based
software engineering environment [6]. Existing
proposed metric are used and validated on a real data
set for improving the result of the package cohesion
metrics measurement. “You cannot control what you
cannot measure” [7], it’s mentioning about the
Component measurements. The quality and
maintenance of the software system will go for the new
development of component or existing developed
component for the system adaptation. The packages
are main concern about the classes and package
cohesion. The four major components are there In-
house components, Commercial off-the shelf
Component, Open source software component and off-
the shelf component. Existing methodology only focus
on the In-house and OSS concept because we can use
source code with-out modification[8].Only a few studies
have been conducted on the usage of reliability metric
on a real data set. In this paper, a new cohesion metrics
to provide a better quality of the software packages. It

e
t

Iyyappan et al., International Journal on Emerging Technologies 10(1): 211-217(2019) 212

also verified and validated with the existing approach of
the package level of component. The improved better
results are observed from new proposed metrics. In this
paper major concern about the basics of software
component and properties of object oriented systems
also define the cohesion measure which is taken at
package level of Low & High cohesion for the object-
oriented systems. The [9] Briand.et.al existing
theoretical approach used for our proposed the analysis
and measurement of metrics low cohesion as well as
high cohesion components. In Briand methodology used
correlating coefficient factor to measure the external
quality factor for reusability of component based
software engineering. This proposed paper content
contain following topics, In Section. 2 about the
literature survey of existing work & ideas and section 3
provide Cohesion Package Measurement on
Theoretical Approach which is taken for proposing the
metric CLC and CHC [10]. In Section 4 contain
Cohesion package measurement of complexity on
theoretical validation of proposed measure. Section 5
Complexity of Cohesion Packages for the Metric
Proposed Experimental Validation using the software
project of public available source code are used for the
comparison of CLC & CHC metric. In section 6
Proposed Analysis methodology used to measure
Coefficient Correlation. Section 7 presents the
conclusions.

II. RELATED WORK

In the review of literature survey, various metrics
measurement of cohesion methods are developed by
considering the modules as well the classes [11] of the
design level focused on the cohesion metrics. In this
paper used various functionalities of the cohesion
metrics for the reusability of component based software
engineering [12].In this paper analysing the quality of
software package level on the basis of object oriented
design. In the software design must have higher
cohesion and more reusability. This design framework
assessing the class level of attribute for the package
cohesion of aspect oriented system [5]. In this paper,
we perform an empirical analysis on Python packages
for the two measures namely coupling and
cohesion. The Structural methods of classes like a
complexity, line of code, coupling and cohesion these
factors are measured from the system maintenance and
software reusability[8]. In real data set value used from
the Jakarta apache organization [14] using Perl
programming languages for the website development.
In this empirical study discuss about the sensible
analysed cohesion metric and deeper investigate
search of the system [15]. Coupling and Cohesion
metrics are used for measuring procedure and object
oriented programming languages. [16] Coupling
describes the interdependency between classes and
methods. Cohesion describes about the binding of
relationship among various elements and methods. That
component bindings are related within module of the
object class. The decomposition of a large program into
modules can be guided by the use of a property
called cohesion. In this paper proposed as a
discriminant for classifying modules to set the metric
value ranges for module classification for the cohesion
[17]. The Comprehensive framework takes in to account
of distinction between the object level and class level
coupling [19] in this methodology which is depends on
the dynamic dependencies and static dependencies for
the maintenance phase[20].In this paper represent an
experimental study to validate the modified global

metrics by showing their relationship to maintainability
and testability. The prediction model for quality attribute
measurement of new set of metrics to improve the result
[21].A measure proposed by Emerson to compute
cohesion by considering of Pascal procedures [18].This
proposed measure was based on the graphic theory for
computing the relationships between the elements of
the class. The chidamber proposed to measure
weighted method per class with total number of
methods and weighting scheme. The prioritization of
methods is used for the module cohesion measurement
that is based on the slice of program code was
proposed by Bieman and Ott [13]. Another method also
proposed by Bieman and Kang, Cohesion of class has
been tightly bounded with each other and loosely
bounded cohesion for the class, are used for the metric
measurement. A many number of methods or measures
proposed for In-house or OSS components are
summarized below:-the various research gap in the [27]
Chidamber & Kemere proposal, weighted method per
class mainly focus on the total number of methods and
priority of the method. To find the average calculation of
metric in object oriented design. Implementation phases
are lacking on this methodology. Also coupling
measurement of kemerer found some research gap like
ametric used to measure the coupling and cohesion. It
is used analyse the overall classes are present in the
coupling measurement. Major focus on the loose
Coupling and Tight Cohesion. Hassoun proposed work,
The Major concern for this dynamic coupling metric how
much duration spend on the time limit for the particular
measurement of coupling between classes. J. Chen [28]
research gap like a Cohesion measurement for the
software system on the basis of complexity. But
weyuker methodology are not able to utilize on this
paper. S. Patel and J. Kaur [29] found a research gap,
this paper will provide a basic information about their
component and internal structure of methods or
attributes. Coupling between components are using the
sharing of components.

III. COHESION PACKAGE MEASUREMENT ON
THEORETICAL APPROACH

In the following modules we used the Inheritance of
hierarchy steps like a tree structure which is related to
the packages, classes and methods similar to the object
oriented programming.

A. Definition of Software packages, Group of classes
and methods
On this cohesion measurement main concern about the
encapsulated about the group of various classes related
to the packages, sub-packages of among the variable
and interface relationship between methods. Generally
a software is made up of thousand number of the
source code and for placing the appropriate interfaces
and methods in to appropriate way packages are
required.

B. Empty Packages
When a package is having no element so no relations
exist between the elements therefore termed as an
empty package and in that case the cohesion value can
be considered as zero. Classes can be called as bunch
of objects or it’s a way with the help of which objects
can be defined.

C. Complexity of Low cohesion (CLC) and Complexity
of High cohesion (CHC)
Software engineering domain focus on the two major
types of the development: Component based software

Iyyappan et al., International Journal on Emerging Technologies 10(1): 211-217(2019) 213

engineering (CBSE) and Commercial-off the shelf
(COTS) development. In the component based software
engineering are mainly concern about complexity metric
and reliability metrics. For this measurements are
observed the quantitative result from development and
maintenance of the software. The more number of the
research focused on complexity measurement between
the coupling and cohesion metric values.
For measuring the complexity of java programming
packages used the group of classes, sub packages of
variable and interface among the methods. For
selecting the low coupling and high cohesion result is
not enough to choose suitable component from the
complexity. In this proposed paper used the concepts,
optimal selection of complexity component between the
coupling and cohesion [10]. This selection component
provide an improved performance, higher quality and
increased reliability. The following steps are applied for
the calculation of complexity among the component and
various packages.

1) Considering the real data set for cohesion
measurement.

2) Finding the parameters like R[D], R[DUI], and
CDI.

3) Calculating the package measurement
between the Complexity Low cohesion and
Complexity High cohesion.

These result comes as a comparison between low
cohesion and high cohesion. The improved result of
CLC and CHC will provide the better quality of software
as well as less complication factor among the software
development and maintenance. Also we followed the
terminology of Low coupling and High cohesion
between the components based software engineering.
Parameters used in the metric are defined as follows:-
R[D]:-The Client direct request for low cohesion
measurement between group of classes and subclasses
among the methods.
R[DUI]: - In this Client request of direct and indirect for
high cohesion measurement on the basis of complexity.
CDI: - The overall direct or indirect connections are
measured from this case study like an P

a
 (E

a+1
, r

a+1
) /

R(R-1) to measure a binary directed relationship
between classes of elements ‘E’ and Classes of relation
‘r’ at the hierarchy level a+1 on the packages. Then R is
representing as a client request of total number of
packages in the case study. In the package
measurement of hierarchical level represent the E

a+1
 = 1

and r
a+1

= 1, so we are able to measure the client direct
request of direct or indirect connections2 / R(R-1) has
been taken from the concept of TCC (Tight class
cohesion) and LCC (Loose Class Cohesion) metric.
CLC & CHC: - Package measurement on the basis of
Complexity of Low cohesion component & Complexity
of High cohesion component.

�� & ��� =
��
�	
��

 0 �
 �� = 0�
����
��� �
 �� < 1�
������

��� �
�� > 1�
 1 �
 �� = 1���

��
���

 Where ‘n’ represent the number of elements between
the classes and methods. On other cases:-If n=0, it
represent the no element value over there, so there is
no possibility of the relation therefore computed value of
CLC & CHC is also 0.If n=1 means that the single
element value is existing over here, so the relation
existing will also be single, hence the value of CLC &
CHC is also 1.

Table 1: Illustration of package measurement for
Complexity of Low cohesion & Complexity of High
cohesion versus Package cohesion metric(PCOh)
[22].

package myshapes;
public interface Drawable
{ public void
draw(Graphics g);
}
class Line implements
Drawable { public void
draw(Graphics g) {
. . . // do something –
presumably, draw a line
. . . // other methods and
variables
}

package
myshapes.round;
import
myshapes.Drawable;
public class Circle {
public void findArea() {
. . . // find area of circle
.. . // other methods and
variables
}
Class FilledCircle extends
Circle
implements Drawable{
public void draw(Graphics
g) {
. . . // do something –
draw a filled Circle
}
void findArea() {
. . . // find area of filled
circle
}
. . . // other methods and
variables
}

IV. COHESION PACKAGE MEASUREMENT OF
COMPLEXITY ON THEORETICAL VALIDATION

In this section mainly focus about the Complexity
measurement of cohesion packages for the component
also use to measure the metric value of low complexity
as well as high complexity which is derived from Briand
four properties [22]. Weyuker’s also proposed a
framework for measuring a complexity metric to get
accurate the accurate result from the observation of
validate real data set value. Some other evaluation
frameworks such as Zuse framework [23] and Tian &
Zelkowitz [24] axioms are also used for validation of
complexity measures. But Briand et al. methodology
mainly focus on the four properties which is used for
measuring the complexity metric value.
Property 1:Set of non-negative integer value and
rating of normalization scale. - According to the
above explanation given in the summarization of
proposed measure the computed value of CLC and
CHC belongs to a specified interval of [0, 10] & [0, 20].
Therefore the value computed by using above already
defined that the measure will be always with zero &
positive number as well as regular number.
Property 2: Empty assessment number and highest
assessment number - Whenever the component is
empty then the value assigned to be as 0 because no
relations between the packages classes and methods
are existing in such a case so null value property is
satisfied. If the component is having a single element
then some types of relations between the packages,
classes and methods are existing and the maximum
value defined to be 1.Hence the measurement satisfies
on the property 2.
Property 3: Isotone subset of the real numbers
According to Briand et al. framework, this property
declares that adding relations will not decrease
cohesion. Since the adding of relations in to the
component will increases the value of R [D] but

Iyyappan et al., International Journal on Emerging Technologies 10(1): 211-217(2019) 214

simultaneously the value of DUI get also increased as
(DUI=direct connection + indirect connection).Hence
adding more number of relations also increase the
cohesion value and hence it satisfies the property of
monotonicity.
Property 4: Combine the not connected packages -
According to this property the joining of two
unconnected packages should not increase the value of
cohesion. The software package cohesion component
complexity metric satisfies this property by the fact that
if the packages are added or merged the value in the
denominator will also increase with the value in the
numerator and also the calculation of parameters are
totally based on number of packages not on the
merging or the connection of packages.

V. COMPLEXITY OF COHESION PACKAGES FOR
THE METRIC PROPOSED EXPERIMENTAL
VALIDATION

In this section we are focusing on the experimental
validation of Complexity metric measurement for Low
cohesion and High cohesion of packages and showing
the improved results of reliability and complexity on the
impact of component reusability of system software.
This method is used for improving the quality and
reducing the complexity of our cohesion packages.

A. Experiment analysis for proposed measurement
The empirical study of the PCoh metrics are used for
analysing the complexity and reliability of the system. In
our proposed methodology also appeared those metric
measurement for improving the better performance of
the system. The template or guidelines provided for
defining the measurement goal [25]. This goal consist
of: Goal of this preliminary study: Number of
packages and the relation between the packages,
classes and methods. Motive of this paper: analysis
and comparison with the PC ohmetric values. Improved
Factors: For using the reusable component the system
quality also increased for software developments.
Observed empirical study: Software developer have
observed that the selection of suitable components.
Software Elements: free available source code of Java
projects are available on the open-source. These above
defined goals help us to determine the type of real data
to be collected.

B. Empirical hypotheses for significant correlation
On this experimental topics we observed that the
hypothesis raise the question between the true or false.
If it’s not a true, approaching the similar statistical result
equivalent to the true conditions. To get the result of
more than one attribute from this objective study to
improve the quality factor[26]. In this case, the statistical
result observed between the packages, group of
classes and Subclasses of methods for the component
reusability. The statistical analysis is based on the
various hypothesis:Hyp0: q=0 (Empty value) - There is
no significant correlation between the low cohesion and
high cohesion among the componentpackages.Hyp1:
q≠0 (Equivalent value) - It is significant correlation
between the proposed high cohesion and low cohesion
of complexity measurement for reusability.

C. Empirical environment for the freeware code of
software projects
There are a various number of free source code
software projects are available on the online website for
a many number of purposes. “The sample used for this
experimental study was taken from six open-source
software projects whose source code was readily

available for use. The major reason behind selection of
these projects was that these software projects were
developed in Java and were organized using packages.
The presence of packages in these projects made it
possible to apply package level metrics on them.
Twenty-five pack-ages taken from six open source
projects were used in order to experimentally evaluate
the proposed metric. Out of these six projects, four
belonged to the Apache soft-ware foundation and
eighteen packages belonging to these four projects
were downloaded from Apache Jakarta web-site”
[22,27].

VI. PROPOSED ANALYSIS METHODOLOGY OF
COEFFICIENT CORRELATION IN COHESION
PACKAGES

A mathematical analytics are proposed to correlate with
the system software packages of Low cohesion
component and High cohesion component metric for
reusability of component based software and also the
computed values are also compared with the Pcoh
metric for examine the improved results. For the
empirical validation of metrics correlation is the suitable
technique. Li and Henry studied the various metrics and
also correlate them to determine their effectiveness [28].
Karl person Correlation coefficient are used for
measuring correlation among the probability value. This
method assumes that there is a constant linear
relationship between the two different variables. In this
relationship one of the variable represent as an
independent module and other is a dependent
relationship module. Karl Pearson’s coefficient of
correlation is given by [29]:

� = Σ��� − ���� � − ��
� ∗ "# ∗ "$

In this correlation measurement has taken place of
variable like an ith term and mean calculation with the
help of median measurement among the coefficient
factor. Also derived the standard deviation among the
‘n’ number of component for calculating the correlation
coefficient. This correlation consider of -1 as a negative
value relation, +1 consider as a positive relationship
variable and 0 it’s like a no linear variable. The
proposed measure of low correlation and high
correlation are determined by the various coefficient
factors [22].
The ratings for the cohesion can be defined as:-

Table 2: Measure Coefficient Correlation.

Complexity of Low
cohesion

Complexity of High
Cohesion

0 “minimum” 0 to 1.0 “minimum”
1.0 to 2.0 “just above the
minimum”

2.0 to 3.0 “just above the
minimum”

2.0 to 4.0 “average” 3.0 to 6.0 “average”
4.0 to 5.0 “Best” 7.0 to 9.0 “Best”
5.0 to 8.0 “optimum” 10 to 18.0 “optimum”

Table 3: Line of code measurement on the basis of
Packages and classes.

S. No. Name of the Software Projects

1. Byte Code Engineering Library (BCEL)
2. Bean Scripting Framework (BSF)
3. Jakarta-ORO

4. Element Construction Set (ECS)

5. XGen Source Code Generator
6 Java unit (JUnit)

Iyyappan et al., International Journal on Emerging Technologies 10(1): 211-217(2019) 215

We are using the following facts as:-
Number of elements consisting of interfaces and
subpackages.so Total number of classes-no of
elements = filtered classes. Now because in this real
data set only a single package is used in a single
component so the direct connection between the
classes and methods are the filtered classes.

Table 4: Calculate Values of Complexity of Low
Cohesion measure.

S.
No.

Name of the
Software
Packages

TC NE D NDI
UC

CL
C

1. org.apache.
bcel.verifier

48 14 34 56 0.60
7

2. org.apache.
bcel.verifier.
exc

14 14 0 10 0

3. org.apache.
bcel.verifier.
statics

9 9 0 1 0

4. org.apache.
bcel.verifier.
structurals

14 14 0 10 0

5. org.apache.
bcel.util

20 20 0 10 0

6. org.apache.
bsf.util.event

21 6 15 18 0.83
3

7. org.apache.
bsf.util.event
.generator

4 4 0 4 0

8. org.apache.
bsf.util

54 20 34 30 1.13

9. org.apache.
bsf.util.type

2 2 0 1 0

10. org.apache.
bsf.util.cf

2 2 0 1 0

11. org.apache.
oro.io

4 4 0 3 0

12. org.apache.
oro.text

50 15 35 34 1.02

13. org.apache.
oro.text.awk

17 17 0 41 0

14. org.apache.
oro.text.perl

3 3 0 0 0

15. org.apache.
oro.util

7 7 0 11 0

16. org.apache.
ecs.jsp

15 15 0 14 0

17. org.apache.
ecs.storage

3 3 0 3 0

18. org.apache.
ecs.xml

3 3 0 2 0

19. workzen.xge
n.ant.legacy

4 4 0 3 0

20. workzen.xge
n.engine

2 2 0 1 0

21. workzen.xge
n.loader

7 7 0 7 0

22. junit.sample
s

2 4 2 1 2

23. junit.sample
s.money

4 4 0 9 0

24. junit.tests 36 5 31 4 7.75

25. junit.tests.ex
tensions

5 5 0 4 0

Table 5: Calculate Values of Complexity of High
Cohesion measure.

S.No. Name of the
Software
Packages

TC NE D ND
IU
C

CHC

1. org.apache.bc
el.verifier

48 14 62 56 1.107

2. org.apache.bc
el.verifier.exc

14 14 28 10 2.8

3. org.apache.bc
el.verifier.stati
cs

9 9 18 1 18

4. org.apache.bc
el.verifier.stru
cturals

14 14 28 10 2.8

5. org.apache.bc
el.util

20 20 40 10 4

6. org.apache.bs
f.util.event

21 6 27 18 1.5

7. org.apache.bs
f.util.event.ge
nerator

4 4 8 4 2

8. org.apache.bs
f.util

54 20 74 30 2.46

9. org.apache.bs
f.util.type

2 2 4 1 4

10. org.apache.bs
f.util.cf

2 2 4 1 4

11 org.apache.or
o.io

4 4 8 3 2.66

12. org.apache.or
o.text

50 15 65 34 1.911

13. org.apache.or
o.text.awk

17 17 34 41 0.829

14 org.apache.or
o.text.perl

3 3 6 0 0

15 org.apache.or
o.util

7 7 14 11 1.27

16. org.apache.ec
s.jsp

15 15 30 14 2.14

17. org.apache.ec
s.storage

3 3 6 3 2

18. org.apache.ec
s.xml

3 3 6 2 3

19. workzen.xgen
.ant.legacy

4 4 8 3 2.66

20. workzen.xgen
.engine

2 2 4 1 4

21. workzen.xgen
.loader

7 7 14 7 2

22. junit.samples 2 4 6 1 6
23. junit.samples.

money
4 4 8 9 0.88

24. junit.tests 36 5 41 4 10.25
25. junit.tests.exte

nsions
5 5 10 4 2.5

A. Analysis of experimental results of Proposed Low
complexity and high complexity
Table 6 shows the package name with the total number
of classes, number of elements with their calculated
filtered class and it is termed as R(D) & R(DUI).The
number of relations is termed as CDI and finally with all
these the Complexity of Low and High cohesion is
calculated with the help of Package.

Iyyappan et al., International Journal on Emerging Technologies 10(1): 211-217(2019) 216

Table 6: Complexity of statistical parameter for Low
cohesion and High cohesion metric.

Statistical parameter CLC CHC

Highest assessment 7.75 18

Lowest assessment 0 0

Median 0 2.5

Mean 0.453 3.39

Standard Deviation 1.53 3.572

B. Ratings for the component reusability with analysed
measure
Below the values in the table are showing that the
metric Package cohesion component complexity metric
is efficient.

Table 7: Rating of Component with Package.

S.No Name of the Software
Packages

Ranking of
complexity
component

1. org.apache.bcel.verifier 8

2. org.apache.bcel.verifier.exc 4

3. org.apache.bcel.verifier.statics 4

4. org.apache.bcel.verifier.structu
rals

3

5. org.apache.bcel.util 2
6. org.apache.bsf.util.event 11

7. org.apache.bsf.util.event.gener
ator

8

8. org.apache.bsf.util 1
9. org.apache.bsf.util.type 18

10. org.apache.bsf.util.cf 10
11. org.apache.oro.io 13

12. org.apache.oro.text 3

13. org.apache.oro.text.awk 1
14. org.apache.oro.text.perl 2

15. org.apache.oro.util 1
16. org.apache.ecs.jsp 5

17. org.apache.ecs.storage 9

18. org.apache.ecs.xml 8

19. workzen.xgen.ant.legacy 5

20. workzen.xgen.engine 16

21. workzen.xgen.loader 6

22. junit.samples 2

23. junit.samples.money 11
24. junit.tests 7

25. junit.tests.extensions 6

From above results it can be concluded that the
components having the high values of cohesion
associated with their packages are termed as optimum
components.

Graph 1: Calculated Complexity of Low cohesion and

High cohesion with total number of packages.

From the table 8, the observed result value between the
correlation coefficient and significant values show the
better results than the comparing of existing metric
measurements.

Graph 2: Calculated classes of Low cohesion and High

cohesion with total number of packages.

Graph 3: Calculated Complexity of Low cohesion and
High cohesion with Line of code along with number of

packages.

Graph 4: Calculate Complexity of Low cohesion and
Complexity of High cohesion comparison between total

numbers of packages.

Table 8: Comparison with the Correlation coefficient
values of Low and High other metrics.

Parameters CLC CHC LCOM LCOM1 ICH SCC

Correlation
Coefficient

0.20 0.48 -0.32 -0.34 0.12 0.27

Significance
value

0.05 0.05 0.05 0.05 0.05 0.05

It is opted for choosing the hypothesis value of 1, not
the value of 0, comparison among the less than or
greater than value should be always 1, not an empty
value hypothesis. So it has been analysed the improved
relation between the low & high cohesion complexity
metric and component reusability.

VII. CONCLUSIONS AND FUTURE SCOPE

In this proposed concept, it has been analysed between
the Low package and High Package cohesion
complexity metric, as well as metric outcome also
compared with the previous Package cohesion. The
CLC and CHC is also validated using those proposed
properties in this paper. The proposed measurement

Iyyappan et al., International Journal on Emerging Technologies 10(1): 211-217(2019) 217

ratio on the basis of direct and indirect relations among
the group of classes and subclasses. The standard
hierarchal structures of package have also been taken
in to consideration. We believe that this metric will help
the other developers and OSS users for the calculation
of complexity based on the concept of cohesion. In
future scope rather than reusability, this metrics are
proposed to establish the relationship between the
component and package modules, along with these
factors also included like a maintainability and
adaptability are utilized for the component based
development environment. Also coupling & cohesion
metric values are reduced the complexity and increase
the performance of the Component based software
system.

REFERENCES

[1]. Basili, V.R. (1997). Evolving and packaging reading
technologies. J System Software, 38(1): 3–12.
[2]. Corbi, T.A. (1989). Program understanding:
challenge for the 1990’s. IBM System J., 28(2): 294–
306.
[3]. Patel, S., Chu, W.C., and Baxter, R. (1992). A
measure for composite module cohesion. In:
Proceedings of the 14th International Conference on
Software Engineering, 38–48.
[4]. Martin, R. (2002). Agile software development,
principles, patterns, and practices. Prentice-Hall, New
York.
[5]. Kaur, P.J., Kaushal, S., and Sangaiah, A.K. (2018).
A Framework for Assessing Reusability Using Package
Cohesion Measure in Aspect Oriented Systems.
International Journal of Parallel Programming, 46(3):
543–564.
[6]. Telles, M. (2001). C# Black Book. The Coriolis
Group.
[7]. DeMarco, T. (1982). Controlling software projects.
Yourdon Press, New York.
[8]. Priyalakshmi, G., and Latha, R. (2018). Evaluation
of Software Reusability Based on Coupling and
Cohesion. International Journal of Software Engineering
and Knowledge Engineering, 28(10): 1455-1485.
[9]. Briand, L., Morasca, S., and Basili, V. (1996).
Property-based software engineering measurement.
IEEE Trans Software Engineering, 22(1): 68–86.
[11]. Bieman, J.M., and Kang, B.K. (1995). Cohesion
and reuse in an object-oriented system. In: Proceedings
of the symposium on software reusability (SSR’95),
Seattle, WA, 259–262.
[12]. Bieman, J.M., and Kang, B.K. (1998). Measuring
design-level cohesion. IEEE Trans Software
Engineering, 24(2): 111–124.
[13]. Bieman, J.M., and Ott, L.M. (1994). Measuring
functional cohesion. IEEE Trans Software Engineering,
20(8): 644–658.
[14]. Briand, L., Morasca, S., and Basili, V. (1996).
Property-based software engineering measurement.
IEEE Trans Software Engineering, 22(1): 68–86.
[15]. Byte Code Engineering Library (BCEL). (2011).
http://jakarta. apache.org/bcel/index.html.

[16]. Counsell, S., Mendes, E., and Swift, S. (2002).
Comprehension of object-oriented software cohesion:
the empirical quagmire. In: Proceedings of the 10th
international workshop on program comprehension, 33–
42.
[17]. Eder, J., Kappel, G., and Schre, M. (1992).
Coupling and cohesion in object-oriented systems. In:
Proceedings of the conference on information and
knowledge, ACM Press, New York.
[18]. Emerson, T. (1984). A discriminant metric for
module cohesion. In: Proceedings of the 7th
international conference on software engineering
(ICSE).
[19]. Chhillar, RS. and Kaijla, P. (2011). A New Knot
Model for Component Based Software Development.
IJCSI, 8(3): 480.
[20]. Hitz, M., and Montazeri, B. (1995). Measuring
coupling and cohesion in object-oriented systems. In:
Proceedings of the third international symposium on
applied corporate computing (ISACC’95), Monter-rey,
Mexico, 25–27.
[21]. Ott, L., Bieman, J.M., Kang, B., and Mehra, B.
(1995). Developing measures of class cohesion for
object-oriented software. In: Proceedings of the annual
Oregon workshop on software metrics (AOWSM’95).
[22]. Almugrin, S., Albattah, W., and Melton, A. (2016).
Using indirect coupling metrics to predict package
maintainability and testability. Journal of system and
software, 121: 298-310.
[23]. Zuse, H. (1991). Software complexity: Measures
and Methods. Journal Software Testing, Verification and
Reliability, 1(3): 41-42.
 [24]. Solingen, R.V. (2002).The goal/question/metric
approach, encyclopaedia of software engineering-2:
578–583.
[25]. Briand, L., Morasca, S., and Basili, V. (2002). An
operational process for goal-driven definition of
measures. IEEE Trans Software Engineering, 12: 1106–
1125.
[26]. The Apache Jakarta Project. (2011).
http://jakarta.apache.org.
[27]. Kothari, C.R. (2007). Research methodology:
methods & techniques, revised second edn. New Age
International, New Delhi, 139–141.
[28]. Chidamber, S.R., and Kemerer, C.F. (1994). A
Metrics suite for object oriented Design. IEEE
Transactions on Software Engineering, 20(6): 476-493.
[29]. Chen, J., Wang, H., Zhou, Y., & Bruda, S. D.
(2011). Complexity metrics for component-based
software systems. International Journal of Digital
Content Technology and its Applications, 5(3): 235-244.
 [30]. Patel, S., and Kaur, J. (2016). A Study of
component based software system metrics.
International Conference on Computing,
Communication and Automation (ICCCA), 824-828.

How to cite this article: Iyyappan, M.

and Kumar, A. (2019). Optimization of Software Package Selection using

Cohesion Measurement and Complexity Metric for CBSS Development. International Journal on Emerging
Technologies, 10(1): 211-217.

