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ABSTRACT: Spectrum scarcity and congestion has motivated new communication paradigm to exploit the 
existing wireless spectrum opportunistically.  An emerging technology based on Cognitive Radio (CR), has 
the potential to maximize spectrum usage efficiently. A key feature of cognitive radio technology is spectrum 
sensing, which is the detection of unused or vacant frequency bands i.e. spectrum holes. The paper presents 
an energy detection technique through Power Spectral Density (PSD) estimation for real time sensing of 
occupied and vacant spectrum bands. The Neyman-Pearson hypothesis is considered for detecting the 
presence and absence of user signal, over a bandwidth of 5MHz, with probability of detection and probability 
of false alarm as metrics. The real time implementation of algorithm has been done on Wireless open Access 
Research Platform (WARP) board with FPGA Virtex 6. The received Welch PSD estimates from the proposed 
technique is then used in energy detection process for identifying spectrum holes that can be used by CR 
systems to access opportunistically. The performance of various modulation schemes viz BPSK, QPSK and 
QAM are presented and discussed for improved signal quality. 

Keywords:  Cognitive Radio, Spectrum Sensing, Energy Detection, Power Spectral Density estimates, WARP. 

Abbreviations: CR, cognitive radio; CRN, cognitive radio network; ED, energy detection; BPSK, binary phase shift 
keying; QPSK, quadrature phase shift keying;  QAM, quadrature amplitude modulation; AWGN, additive white 
gaussian noise;  5G, fifth generation; FFT, fast fourier transform; FPGA, field programmable gate array; PU, primary 
user; SU, secondary user; PSD, power spectral density; WARP, wireless open access research platform.   

I.  INTRODUCTION 

Wireless communication technology has made a 
remarkable transition from first transatlantic radio 
transmission by G. Marconi in 1897 to cellular mobile 
communications in late 1970s with the advent of solid-
state radio frequency hardware. Thereafter, almost 
every ten years a new generation of cellular system has 
emerged. First generation (1G) communication system 
is of early 1980s. The 2G communication system were 
deployed in 1992, while 3G in early 2000, followed by 
4G communication systems in 2010. Technological 
development during 1G to 4G has witnessed a transition 
from analog voice only services to GPRS (General 
Packet Radio Service) to LTE (Long Term Evolution), 
with speed of transmission from 11 Mbps in year 2000 
to 300 Mbps in year 2010 [1]. The fifth generation (5G) 
standards are being introduced now in early 2020s, with 
an aim to incorporate the existing wireless and wired 
communication technologies into all IP (Internet 
Protocol) networks. Now under 5G communication 
systems, the new wireless architecture is being created 
to enable human-centric communications at data rates 
as high as 1Tbps; technological solutions for huge 
system capacity of 10-100 Mbps/m2; an end-to-end 
latency of less than 1ms; ubiquitous connectivity and 
increased energy efficiency to cater the upcoming 
requirements of ever increasing number of data-based 
applications, wireless and IoT (internet of things) based 

devices [2]. The number of wireless devices at global 
level are expected to increase from ~7 billion in 2015 to 
~100 billion by 2025, out of which ~208 million new 
subscribers will get connected in India itself [3]. Hence, 
demand for wireless spectrum has increased 
exponentially. The limited available spectrum and the 
inefficient spectrum usage have brought in a new 
communication paradigm based on cognitive radio to 
exploit the existing wireless spectrum efficiently.  
Cognitive Radio (CR), a recent innovative extension of 
SDR (software defined radio) was introduced to the 
wireless radio community by Mitola & Maguire in 1999. 
He described, “CR is a goal driven framework in which 
the radio autonomously observes the radio environment, 
infers context, assesses alternatives, generates plans, 
supervises multimedia services, and learns from its 
mistakes [4]. Accordingly, cognitive radio networks 
(CRNs) have opened immense possibilities for 
utilization of congested radio frequency spectrum by 
sensing and monitoring the idle portions of spectrum in 
time, space and frequency domain referred as 'spectrum 
holes'. These are the unused frequency bands of the 
licensed primary users (PUs) can be allowed to be used 
by the unlicensed-cognitive or secondary users (SUs), 
without causing any harmful interference to the PUs. 
The channel reuse may cause interferences, degrade 
the SNR of received signal and consequently decrease 
overall capacity of the system [5]. CR systems help in 
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overcoming these issues by spectrum management 
strategies implemented through cognitive cycle.  
CR systems works in coordination with the receiver and 
transmitter channel in a Cognitive Cycle comprising of 
four steps: first step is spectrum sensing and analysis at 
the receiver end to detect the unused frequency bands. 
The channel identification on the receiver side for 
coherent detection of the message signal and planning 
possible action strategies is the second step. Deciding 
the optimal operative strategy to allow spectrum sharing 
after learning from provided information is the third step 
of cognitive cycle. Last step, is spectrum mobility for 
providing uninterrupted communication to SUs while 
switching to alternate spectral band if PU resumes the 
networks. Reliable spectrum sensing is one of the key 
technologies for enabling spectrum coexistence and 
efficient utilization of available spectrum. 

II. RELATED WORK 

In CR systems, spectrum sensing is the major task for 
detection and monitoring of spectrum holes. Energy 
detection, matched filtering detection, and 
cyclostationary (or feature detection) are classical 
spectrum sensing techniques where sensing algorithms 
are based on the users' transmitted signal. Such 
algorithms are less complex and technologically mature. 
Among different methods for spectrum sensing, energy 
detection (ED) is simple to realize hence most popular 
signal detection method in practical implementation. 
Moreover, any prior information about the PU i.e. 
transmitted signal properties, channel information, or 
even the type of modulation is not required for ED 
algorithm. Although, ED technique suffers from poor 
performance at low SNR, however literature reveals 
various algorithms and variations of ED to get best out 
of this simple technique towards optimizing the 
spectrum usage [6]. Although energy detection can be 
implemented in time as well as in frequency domain, 
however the approach is more flexible in frequency 
domain. Urkowitz (1967) proposed a model for the 
general analysis of energy detector in time domain in 
Additive White Gaussian Noise (AWGN) channel [7]. 
Lee and Akyildiz (2008) proposed maximum a posteriori 
probability (MAP) based sensing framework on the 
energy detection and primary user activities based 
decision criterion to address the interference and the 
spectrum efficiency issues [8]. Moghimi et al., (2011) 
proposed a novel hybrid ED scheme for spectrum 
sensing which turned out to be of low–complexity with 
locally optimal decision metric [9]. Dhope et al., (2011) 
described a hybrid detection method which exploited the 
advantages of energy detection and covariance 
absolute value for different types of input [10]. Various 
aspects of hybrid detection based on ED and 
cyclostationary techniques are reviewed [11]. Chen 
(2010) proposed a modified ED algorithm, wherein the 
squaring operation of the signal amplitude is replaced 
with an arbitrary positive power operation  [12]. 
Periodogram and Welch’s periodogram has been quite 
a popular method for ED simulation studies [13-17]. To 
improve the performance and detection sensitivity, 
double threshold and dynamic threshold [18-20] based 
energy detection algorithm have been proposed. Koley 
et al., (2015) applied gradient-based ED for wide band in 
GSM and CDMA bands [21]. Digham et al., (2007) 

focused on multiple antenna processing based energy 
detection under different fading channels and quantify 
the improvement in the probability of detection [22]. 
Pandharipande and Linnartz (2007) compared multiple 
antenna CR processing vis-a-vis  a single antenna 
based ED scheme under Rayleigh fading channel [23]. 
Ciftci and Torlak (2008) compared ED models in AWGN 
and Rayleigh channels [24]. ED technique has been 
used for narrow band sensing and wideband sensing by 
employing an array of energy detectors as multiband 
joint detection (MJD) [25, 26]. 
For CR based communication system, experimental 
implementation is an important step to demonstrate its 
working over-the-air.  CR testbed/CR platform can 
significantly speed up the simulation and experimental 
evaluation in real time [27, 28]. Although, literature 
survey revealed versatility of energy detection technique 
under varied communication system, only few have 
demonstrated the experimental implementation using 
BEE2 Memec, USRP and WARP platform [13-15, 20, 
29, 30].  
In this paper, spectrum sensing based on energy 
detection technique through power spectral density 
(PSD) estimation is studied in frequency selective 
AWGN environment for signals under various 
modulation schemes.   The implementation of proposed 
simplistic CRN simulation was performed on WARP 
(Wireless open-Access Research Platform) for real time 
sensing of occupied and vacant frequency bands. 

III. METHODOLOGY AND EXPERIMENTAL SETUP 

A. Energy detection based spectrum sensing  
Spectrum sensing provides the required awareness 
about spectrum availability to the CR environment and 
is formulated as a binary hypothesis: 
H0 : xn = wn 

H1 : xn = sn + wn,     n = 1, 2, . . .,N –1 
where, xn is the nth sample of the received by a SU, sn is 
the primary transmitted signal by the PU and wn is the 
additive white gaussian noise(AWGN) with mean zero 
and variance σ2. The variable, N denotes number of 
signal samples. 
H0 and H1 represent the null hypothesis and true 
hypothesis respectively. The Neyman-Pearson criteria is 
used to compare the test statistics, T with predefined 
threshold λ, for the energy detection method which is 
expressed as [6]:  

  �(�) =  ∑  ��	
��
��   

��
>
<
��

 λ                                                (1) 

The sensing is based on test statistic values of signal 
samples received; if the threshold value exceeds the 
value of test statistics, it is inferred that H1 is true (i.e. 
PU present, channel is occupied and busy), otherwise 
H0 (i.e. PU absent, channel is vacant or unused).  
For detection of the signal energy, the received signal is 
first passed through a Band Pass Filter (BPF),  sampled 
by ADC (analog-to-digital converter) and then it is 
converted to frequency domain by taking its Fast Fourier 
Transformation (FFT) followed by squaring its 
magnitude and then taking average over the selected 
band. Average power is finally compared with the 
threshold, λ for identification of the idle slot in the 
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chosen bandwidth of spectrum. This property is used for 
simulations and implementation on wireless platform. 
The Probability of detection (PD), is the probability of 
finding a channel occupied actually by the PU. This   
occurs when the value of received test statistics, T is 
greater than the value of threshold, indicating the 
hypothesis H1 and is given as [13]:   

 ��  = � (� > � /��)  = Q ���
���

√	
���
�                                 (2) 

where, Q represents standard Gaussian complementary 
cumulative distribution function, ��	 is the variance of 
transmitted signal and N is the number of samples.  
The probability of finding channel occupied when it is 
actually vacant is the probability of False Alarm (PFA). It 
is  indicated by the hypothesis H0 and is given as [13]: 

             � !  = � (� < � /�")  = Q ���
���

√	
���
�                      (3) 

Probability of missed detection (PM) is given as,  
               �# = 1 − ��                                                     (4) 
While a missed detection reduces the spectral 
efficiency, a false alarm causes interference with the PU 
detection, therefore optimum detection performance is 
achieved when detection probability is maximized 
subject to the constraint of the probability of false alarm. 
As per IEEE 802.22 standard, the false-alarm 
probabilities and detection probability are assumed to 
be PFA ≤ 0.1 and PD ≥ 0.9.  

B. Power Spectral Density Estimation by Periodogram 
and Welch Method  
In frequency domain, power spectral density (PSD) 
estimation is considered to obtain the energy 
measurement, which is used to decide presence or 
absence of user signal. 
To optimize the performance of the detection method, it 
is important to accurately estimate the energy or its 
equivalent, the power of bandwidth of interest. The 
periodogram is the simplest non-parametric method of 
PSD estimation [16]. It can be obtained by first 
estimating the autocorrelation sequence from the 
observed samples x[0], x[1], .... x[N-1] and applying the 
FFT to transforms a signal from a time domain to a 
frequency domain. Periodogram makes use of the 
power of each frequency of the signal for PSD 
estimation. This property is used in the simulations and 
for real-time implementation. However, due to high 
variance periodogram are inconsistent. By applying 
Welch’s approach, data are divided into several 
overlapping segments. Then a window function is 
applied on each segment, followed by computing of 
periodogram for each segment. Lastly, the averaged 
periodogram of each segment is known as Welch 
Periodogram [17]. They are consistent and can be used 
to achieve better resolution of the signal.  

C. Hardware and Software setup 
All simulated operations between transmitter and 
receiver i.e. modulation, energy detection by PSD 
estimation and allocation were done using MATLAB-
2018b and Xilinx iMPACT. 
The flow diagram depicting energy detection simulation 
is shown in Fig. 1. After initialization of carrier and 
sampling frequency bands, user data is modulated over 
frequency bands using different modulation techniques 
viz. Binary Phase Shift Keying (BPSK), Quadrature 

Phase Shift Keying (QPSK) and Quadrature Amplitude 
Modulation (QAM). 
The modulated signal is passed through an AWGN 
channel to the energy detector. The received PSD 
output recorded as Periodogram and Welch’s 
periodogram is used to assess the cognitive spectral 
environment about the occupied and vacant spectrum 
slots status based on the Neyman-Pearson criteria. On 
detecting a vacant slot, SU is allotted to that slot. In 
Matlab, Periodogram function, Pxx= Periodogram(s) is 
used and average power in the signal over that 
particular frequency band is HPSD = dspdata.psd(Pxx).   

 

Fig. 1. Flow chart for PSD based energy detection. 

WARP is used for validating the performance of energy 
detector. WARP has a reconfigurable field 
programmable gate array (FPGA) for performing signal 
processing applications which supports different radio 
boards at the front end. For present study two WARP 
boards with Xilinx Virtex-6 LX240T FPGA (Mango 
Communications, USA) each with one antenna 
2.4/5GHz were used. The primary user signals are 
generated in transmitter WARP board whereas other 
WARP board is configured as a receiver board for 
secondary user. Transmission and reception of the 
signal are performed wirelessly. A common Ethernet 
Switch (1Gbps) connects the transmitting WARP nodes, 
receiving WARP nodes and host PC equipped with 
WARPLAB7 and Simulation Software to establish the 
communication link. The hardware setup for 
experimental implementation of spectrum sensing is 
shown in Fig. 2.  The chosen frequency band (1 MHz - 
5MHz) is the input signal for FPGA implementation. The 
received signal is sampled by A/D Converter with 
frequency of 12 MHz.  
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Fig. 2. Experimental Setup. 

Following parameters were considered for present work. 
Number of samples:  1000   
Carrier frequencies,  FC :   1, 2, 3, 4, 5 MHz 
Sampling frequency, FS :  12 MHz 
Signal to Noise Ratio, SNR:  − 30 db to 10 db 
Probability of false alarm, PFA :     0.001, 0.01, 0.1     
Threshold value at PFA = 0.01 :      1.0735 

IV. RESULTS AND DISCUSSION 

A simplistic CR environment with multiple users is 
simulated for monitoring the spectrum holes. Probability 
of detection, PD of primary user signal over 5 MHz is 
computed using test statistic (T),  

A. Performance evaluation of Energy detection 
The performance of Energy Detector is measured by its 
ability to achieve maximum detection probability at an 
optimum false alarm probability for a given SNR. The 
receiver operating characteristic (ROC) curves, as plot 
of PD vs PFA are the performance metrics for evaluating 
the performance of sensing technique. 
Fig. 3 shows ROC plots for BPSK signal at SNR value 
of 10 dB. Simulated results are found to be in close 
proximity to the theoretical model. 

B. Effect of SNR on Probability of Detection 
From the PSD based data about PU’s activity, SUs 
sense the channel and translate the values of SNR to 
PD using Neyman-Pearson detection strategy at a 
constant PFA. Fig. 4 shows the variation of PD with SNR 
for different PFA values, from where probability of false 
alarm as 0.01 was considered as optimum value for 
further studies on estimating PD values for different 
models under study.  
Probability of detection and probability of missed 
detection at different SNR values ranging from −30 dB 
to +10 dB at constant PFA as 0.01 were computed using 
Eqn. (2) and (4), values are included  in Table 1. With 
increasing SNR, the detection probability increases and 
probability of missed detection decreases; at SNR value 
≥ −5 dB, PD reaches unity whereas PM reduces to zero 
for BPSK and QPSK modulated signal. 
 

  

                                   

Fig. 3. ROC plots for the energy detector at SNR 10dB.       Fig. 4. Probability of detection vs SNR at different PFA. 

Table 1: SNR based Performance of spectrum sensing by energy detection for BPSK and QAM modulated 
signal at PFA = 0.01. 

SNR 

(dB) 

BPSK QPSK QAM 

PD PM PD PM PD PM 

-30 0.2836 0.7164 0.1806 0.8194 0.0022 0.9978 

-25 0.3006 0.6994 0.2012 0.7988 0.0087 0.9913 

-20 0.3565 0.6435 0.2525 0.7475 0.0125 0.8750 

-15 0.5433 0.4567 0.2633 0.7367 0.0260 0.9740 

-10 0.9321 0.0679 0.8021 0.1979 0.8140 0.1860 

-9 0.9757 0.0243 0.8757 0.1243 0.9671 0.0329 

-8 0.9945 0.0055 0.9545 0.0455 0.9970 0.0030 

-7 0.9994 0.0006 0.9784 0.0216 1 0 

-6 0.9994 0.0006 0.9964 0.0036 1 0 

-5 1 0 1 0 1 0 

0 1 0 1 0 1 0 

10 1 0 1 0 1 0 
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For QAM signals the PD reached unity and PM reduces 
to zero at SNR value ≥ −7 dB.  
Fig. 5 includes representative periodogram at SNR -10 
db and +10 db, which gives a comparative view  on the 
effect of noise on transmitted signal. In general, high 
disturbances (noisy channel) were observed in channel 
at lower SNR, which might leads to high probability of 
error in the received signal. 

On comparing the simulation results, it was clear that 
signal resolution for slot status identification (occupied 
or vacant) could be achieved at much lower SNR for 
received signal modulated under QAM as compared to 
the BPSK and QPSK signals. These observations are in 
concordance with earlier sensing studies based on 
energy detection [29].  

 

Fig. 5.  Energy detector output as periodogram psd estimates at SNR -10 db (upper row) and +10 db (lower row) for 
BPSK, QPSK and QAM signals. 

 

Fig. 6. Welch curves showing channel allocation to SUs for QAM signal in AWGN channel for multiple slots. A: 3 PU, 
0SU; B: 3PU, 1 SU; C: 3PU, 2SU. 

C. Monitoring Spectrum Holes by Welch method 
For allocation of idle spectrum bands to SUs, the CR 
system continuously monitors for spectrum hole through 
energy detection. Frequency signal peaks in 
periodogram higher than that of the threshold value are 
marked as occupied channel. The lower frequency 
peaks are indicative of vacant /free channel, designated 
as spectrum holes. Welch method revealed PSD 
estimates with high contrast and resolution to 
differentiate the busy an idle band and are therefore 
considered better for monitoring the spectrum holes as 
shown in Fig. 6 for QAM signal. Fig. 6-A depicts a stage 
where three primary users: PU1, PU2 and PU3 are 
present at 1st, 4th and 5th slots respectively and 2nd and 
3rd slots are identified as spectrum holes where no 
activity of PU is recorded, confirming that PU is absent. 

Looking at the available vacant slot, now the CR system 
will automatically assign it to the SUs.  Among the 
available frequency slots, SU1 access the channel as 
per local allocation policy.  Presently SU1 is shown to 
occupy channel 4 as evident from increased power of 
4th slot (Fig. 6-B). Now the system will again search for 
the next spectrum hole and automatically assign 
available 3rd slot to SU2 as shown in Fig. 6-C.  

V. CONCLUSION 

Spectrum sensing using energy detection based on 
PSD estimates for CRNs has been performed 
successfully in a multiple user environment. Simulations 
were carried out for BPSK modulated, QPSK modulated 
and QAM signals and discussed. On varying the values 
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of SNR, it was observed that for lower SNR values, 
performance of detections was reduced. For QAM 
signals, detection occurred at SNR value -7dB, thus it 
can sense more channels at a given time as compared 
to BPSK and QPSK signals. Performance of energy 
detection was evaluated using ROC curves. WARP 
boards were used for the implementation of the 
algorithm in real time. PSD estimates in the form of 
Welch Periodogram of the received signal were used to 
identify the available vacant bands, which could be 
allocated to SUs to improve the overall throughput of 
system.  

VI. FUTURE SCOPE 

It is envisaged to implement the spectrum sensing 
model for a complex real time scenario of 
heterogeneous cognitive environment involving 
femtocells.  
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