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ABSTRACT: The effect of rigidity on surface waves in multi-layered medium have been studied in this paper. 
We have extended the research work which is based on the propagation of shear waves in a multilayered 
medium including a fluid-saturated porous layer with free surface [1]. The rigidity effect for a model 
consisting a transversely isotropic liquid-saturated porous layer between a non-homogeneous elastic half 
space and an elastic isotropic homogeneous layer have been studied and the dispersion relation for the 
considered problem have been derived. We have also discussed some particular cases for surface wave 
propagation with and without rigidity. 
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I. INTRODUCTION 

The Earth is a layered medium and assumptions 
regarding the inner structure of the Earth may be 
evolved through analysing seismic waves that travel 
through the Earth and are calculated at seismic stations. 
Seismic waves are used by the Earth scientists to 
examine the depth of the layers consisted in the Earth. 
Due to slower attenuation of strength, surface wave 
causes plenty of destruction to the structure of the Earth 
in comparison to the body waves. It was Biot who first 
investigated the dispersion equation for surface wave 
propagation in a porous medium [2]. The distribution 
curves for Love wave propagation in a diagonally 
isotropic crustal layer with an irregularity along the 
boundary had been developed [3]. The dispersion 
equation for shear waves in a multilayered medium 
involving a liquid saturated porous layer developed by 
[1]. The propagation of torsional waves due to influence 
of rigidity and irregularity had been examined [4]. The 
Love wave propagation under a liquid saturated porous 
stratum through a rigid interface lying over an elastic 
half space under gravity studied with the help of a 
mathematical model [5]. Love wave propagation under 
the influence of rigid boundary in a non-homogeneous 
layer through an initially stressed half space studied and 
found that the heterogeneity was present in density as 
well as rigidity [6]. Love wave propagation in porous 
stratum due to the effect of rigid layer had been 
examined [7]. The effect of irregularity, inhomogenity 
and rigidity in fluid saturated porous layer over 
homogeneous and non-homogeneous half spaces had 
also been studied by many authors time to time like [8-
15] and developed the corresponding frequency 
equations in terms of phase velocity wave number. 
Torsional ground waves in an inhomogeneous 
anisotropic layer lying between two non-homogeneous 
half-spaces discussed [16] and derived corresponding 
dispersion equation. The elastic wave propagation at 
imperfect boundary of micropolar- elastic solid and fluid 

saturated porous solid half-space had been studied and 
the dispersion equation had been derived [17]. In this 
paper, a mathematical model consisting intermediate 
transversely isotropic liquid-saturated porous layer 
resting on the non-homogeneous elastic half space and 
lying under an elastic isotropic homogeneous rigid 
boundary have been considered. The inhomogeneity 
present in the lower half space varies exponentially with 
depth. The dispersion relation has been derived for the 
surface waves and some particular cases have also 
been discussed. 

II. PROBLEM FORMULATION  

A model consisting a transversely isotropic fluid 
saturated porous stratum of thickness H resting on a 
non-homogeneous elastic half space and lying under an 
elastic isotropic homogeneous rigid layer of width ‘h’ 
have been considered. The Cartesian coordinate 
system (x, y, z) with z-axis vertically downward and x-
axis is parallel to wave propagation have been taken. 
The components along the y-direction are zero due to 
two-dimensional x-z plane. Let the uppermost 
homogeneous rigid layer defined as the medium 
M1: −�ℎ + �� ≤ 	 ≤ �, the intermediate layer be the 
medium M2: −� ≤ 	 ≤ 0  and the half space as the 
medium M3: 0 ≤ 	 ≤ ∞ . The geometry of the proposed  
problem have been presented in Fig. 1. 

III. GOVERNING EQUATIONS 

The inhomogeneity is supposed to be changed 
exponentially according to depth, and is given by  ∗�	� = �∗����� �∗�	�  =  ��∗�����                            (1) 

where �∗ and ��∗ are the constant of shear modulus ∗�	� and the mass density �∗�	� respectively at the 
rigid boundary and m is any constant. 
The basic equations for the considered mediums are as 
follow: 
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Fig. 1. Geometry of Surface Wave Propagation in 

Multilayered Media.  

For Medium M1 

The equation of motion without body forces for medium 
M1 is given by ���,�   =  �����                        (2) 

where ��is the density, �� are displacement components 
at time t, and ��� are defined as the components of 

stress-tensor, comma indicate the differentiation with 
respect to the position �� and dot is that of with respect 
to time t. 
The stress-strain relations are given by [18] ��� =  ������� + 2���                (3)    

where � and  are Lame’s constants, ���is known the Kronecker delta and  

���= 
 
! "��,� + ��,� #,                 (4) ���$%&� �.                 (5) 

For Medium M2 

The equation of motion without body forces, for medium 
M2 are given by [2] '��,�$�   (�� + � ! )�� + *��")+� − (+�# ',�$� ! (�� + �!! )�� + *��")+� − (+�#                      (6) 

where '�� are stress-tensor components of the solid 

frame, ' = −,- is reduced pressure of the liquid ( , is 
the pressure on the fluid, and - is porosity), and (� are 
the components of displacement vector of the solid 
frame and )� are that of fluid and ' is total surface unit. 
The parameter �   , � !  and �!! are the dynamic 
coefficients and taken into consideration of the inertia 

effect of moving fluid, �.  and �/ are mass density of the 

solid and fluid respectively and related by the relation [2] 
as �  +� ! = (1--)�., � !+�!! = -�/               (7) 

and satisfy the inequalities �  > 0,  �!! > 0, � ! ≤ 0, �  �!! − � !! > 0                (8) 
where � ! is coupling parameter. 
Following [19], the components of the flow opposition 
tensor b used for the transverse-isotropy are 

*�� = 1*  0 00 *  00 0 *22
3                (9)  

The constitutive relations, for medium M2 are 
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              (10) 
where 

@�� =  
! "(�,� + (�,�#,   @�� = %&� (, @ = %&� )             (11) 

where A, C, F, G, M, N, Q, R are the materials 
constants. 
For Medium M3 
The basic equations of motion in the absence of body 
forces for medium M3 are [20] A��,� = �∗B��                (12) 

where A��, B� and �∗ are the stress, displacement 

vectors and density of fluids respectively. 
The corresponding constitutive relations are A�� = �∗��̅���� + 2∗��̅�               (13) 

where�∗ and ∗ are the Lame’s constants ��̅� =  
! "B�,� + B�,�#,               (14)   ��̅� = %&� B.  

For wave changing harmonically in x-z plane, we take � = �2 =  0,  �! = ���, 	, A�,  ( = (2 = 0,  (! = (��, 	, A�,   ) = )2 =  0, )! = )��, 	, A�, B = B2 =  0, B! = B��, 	, A�.            (15) 
The equations of motion (2), (6) and (12) with the help 
of Eqns. (3), (5), (9)-(11) and (13)-(14), respectively, 
take the form of  ∇!� = ����                (16) 

E FGHGFIG += FGHGF�G  = �   (� + � ! )� − *  ")+ − (+ #            (17) 

� !(�  + �!!)�  + *  ()+ − (+ ) = 0  
 (18) ∗∇!B + ,2∗B,2=�∗B�                (19) 

where   ∇!= FG
FIG + FG

F� G , is the Laplacian operator. 

IV. BOUNDARY CONDITIONS 

The boundary conditions for the considered model are 
given as 
(a) At the rigid surface 	 = −�ℎ + ��, displacement 
components vanish i.e.,  �NO�, 	 = −�ℎ + ��, AP = 0               (20) 
 
(b) At the interface  	 = − H, the displacement and stress 
components are continuous i.e., 
v (�, 	 = − H, t) = u (�, 	 = − H,t�             (21) �2!��, 	= − H, t) = '2! ��, 	 = − H, t�             (22) 
(c) At the interface  	 = 0, the displacement and stress 
components are also continuous i.e. 
u (�, 	 = 0, t) = w (�, 	 = 0, t�              (23) '2! ��, 	 = 0, t) = A2!��, 	 = 0, t)              (24) 
The Eqns. (16)-(19) with the help of (1) along with 
above boundary conditions are the governing equations 
for the considered model. 

V. SOLUTION OF THE PROBLEM 

For wave changing harmonically with time and 
propagate in � direction, so we can assume 
displacement in the form of  

(v, u, U, w) = ( �N,(N,)N , BN�����ISTU�            (25) 

where �N,(N,)N VW% BN are the function of z only, X is the 

angular frequency and k is the wave number. 
The Eqns. (16)-(19) with the help of (1) and (25) give 

Y FG
F�G +  Z ![ �N = 0,               (26) 

Y FG
F�G + Z!![ YH\]\[ =0,             (27) 

Y FG
F�G + ^ F

F� − Z2![ BN = 0,              (28) 

where Z ! = TG_\` −a!, 
Z!! = b! − �G

c E, 
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b! =  �: + &?� TG
c  , 

F = {��   �!!S� ! !��!! + ��  S�!!�*  !}/��!! X�! + *  !, 

R = {�−�!! ! + � ! !�*  Xe / ��!! X�! + *  ! . 
The quantity Z!! is complex due to the structure of  b! . 
Z2! = a! − _∗TG

`∗  

where /�and �∗/��∗  signify the velocities of waves for 
the upper layer and lower half space respectively. 
Now, the solutions of differential Eqns. (26)-(28) with the 
help of (25) are g��, 	, A� = (h cos Z z  + h! sin Z z� ����ISTU�            (29) (��, 	, A� = (h2 cos Z!z  + ho sin Z!z� ����ISTU�            (30) )��, 	, A� = (h2ppp cos Z!z  + hoppp sin Z!z� ����ISTU�            (31) 

w = hq�Sr�����ISTU�             (32) 
where 

s = − �St�GuovwG
!  and h , h!, h2, ho, hq are arbitrary 

constants. 
By applying the boundary conditions (20)-(24) in Eqns. 
(29)-(30) and (32), we get a set of five homogeneous 
equations in five unknowns  h , h!, h2, ho, and hq h cos Z �ℎ + �� − h! sin Z �ℎ + �� = 0             (33) 
(h cos Z H − h! sin Z H� − �h2 cos Z!H − ho sin Z!H� =0,             (34) Z (h sin Z H  + h! cos Z H � − =Z!(h2 sin Z!H +ho cos Z!H �=0             (35)  h2−hq = 0             (36) =Z!ho + �∗shq =0             (37) 
For non- trivial solution of above homogeneous system 
of Eqns. (33)-(37), we have 

 
             (38)  
On simplification, we get 
 vGc
`vz tan Z! � tan Z ℎ = �∗s Y{{|} vz~

`vz +  {|} vG�
cvG e  + 1[      (39) 

Equation (39) is the required dispersion equation for the 
shear waves for the considered problem and that relates 
the phase velocity of propagation, inhomogeneity and 
rigidity parameter. 

VI. PARTICULAR CASES 

Case 1: If h = 0, equation (39) reduces to tan Z! � = −=Z!/ �∗s             (40) 
which is the dispersion equation for shear waves for 
transversely isotropic fluid saturated porous layer lying 
over a non-homogeneous half space. 

Case 2: If H = 0, Eqn. (39) become 

tan Z ℎ = −Z /�∗s             (41) 
The Eqn. (41) is the dispersion relation for shear waves 
in an elastic isotropic homogeneous layer lying over a 
non-homogeneous half space with rigid boundary. 

VII. CONCLUSION 

Surface wave propagation in multilayered media under 
the effect of rigidity had been studied and dispersion 
equation obtained analytically by using simple 
mathematical calculations. Some particular cases had 
also been discussed. Due to varied application of 
seismology, this paper may be very helpful for 
researchers as well as post graduate students. 
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