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ABSTRACT: In this manuscript, we use mixed g -monotone property to find results on coupled coincidence 
point for nonlinear contractive maps under ordered metric spaces by using altering distances function. So 
many methods are in existing literature to prove the result on coupled coincidence point. In this manuscript 
we are using g- monotone property which provides the effective result. We provide examples to support the 
result. Also, an application for integral equations given to help of these outcomes. 
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I. INTRODUCTION 

Ran and Reurings (2004) firstly obtained the existence 
for contractive type mappings which have fixed points 
[25]. The authors demonstrated a few applications of 
their outcomes to linear and non-linear matrix equations. 
Numerous researchers develop and considered the 
conclusions under different contractive conditions in 
spaces which is order metric e.g., in [3, 4, 8, 17, 23, 24, 
30]. Khan et al., (1984) [19] presented altering distance 
functions. They have applied this function and its 
augmentations in numerous papers, some of them [7, 10, 
16, 18, 22, 28]. 
The study to existence and oneness of coupled fixed 
points under maps fulfilling certain contractive conditions 
has been an interesting field of mathematics. For coupled 
fixed points, Bhaskar et al., [9] presented ideas of mixed 
monotone mappings and showed the certain theorems. 
Later on, Ciric and Lakshmikantham (2009) [14] 
presented a new notion as coupled coincidence point 
with commutative maps of the mixed g- monotone. 
Results established by them in a partially ordered space 
for mappings which is mixed g-monotone. In recent 
years, several authors have got results of coupled fixed 
and coincidence point under different type of maps on 
abstract metric spaces like partially ordered, complete, 
cone and G- metric [6, 11, 13, 15, 20, 21, 27, 29]. After 
using the concept of g - monotone property in our result 
we get another way to find the result on coupled 
coincidence point. 
Abbas et al., (2010) [1] presented a new perception of w 
and w* - compatible maps. Abbas et al., (2011) [2] used 
the idea in G- metric spaces to represent a oneness 
theorem for coupled fixed point using nonlinear 
contractive maps [5, 12, 26]. 
Definitions given below by Bhaskar and 
Lakshmikantham (2006) [9]. 
Definition 1.1. [9]. A point (z, s) ∈ W × W of R ∶
 W × W →  W is coupled fixed point if it possesses 

R(z, s) =  z and R(s, z) =  z. 

Definition 1.2. [9]. Assume (W, ≤) partially ordered set, 

R: W × W →  W.  R has property of mixed monotone 

when R(z, v)is monotonically non decreasing and non-
increasing in z and v respectively, therefore for any 
z , v ∈  W,  

z1, z2 ∈ W, z1 ≤ z2 ⟹ R(z1,v) ≤ R(z2, v) 

and 
v1, v2 ∈ W, v1 ≤ v2 ⟹ R(z, v1) ≤ R(z, v2) 
The subsequent definition introduced by Ciric and 
Lakshmikantham in [14]. 

Definition 1.3. [14]. For mappings R ∶  W × W to W and 
h ∶  W →  W, point (z, v) ∈ W × W is coupled coincidence 

point if it possesses  R(z, v) =  hz, R(v, z) =  hv. 
Definition 1.4. [14] Let W be a set of non-empty type. 

Two Mappings R and s are commutative where  R: W ×
W →  W and   s ∶  W → W  if sR(z, v)  =  R(sz, sv), for all  
z, v ∈ W. 
Information given by Khan et al., (1984) [19] about the 
function of altering distance type. 
Definition 1.5. [19]. Γ is a function of altering distance 

type if Γ ∶  [0, ∞) →  [0, ∞) such that: 
(i) Γ is increasing and smooth. 
(ii) Γ(z) =  0 iff z =  0. 
Abbas et al., (2010) [1] gave the idea of w and w*-
compatible maps and applied the idea to derive useful 
theorem in cone metric for coupled fixed point. 
Definition 1.6. [1]. Maps R ∶  W × W → W and     h ∶ W →
W are called 

(i) w-compatible if s(R(z, v)) =  R(hz, hv) 

whenever hz =  R(z, v) and hv =  R(v, z); 
(ii) w ∗ −compatible if h(R(z, z)) =  R(hz, hz)  

whenever  hz =  R(z, z). 
The objective of this manuscript is to substantiate certain 
results on coupled coincidence point for maps utilizing 
the property mixed g- monotone, including altering 
distance functions under ordered metric spaces. Lastly, 
for integral equations we existent application. 
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II.  MAIN THEOREM 

Theorem 2.1. Presume (W, ≤, d ) be a space which is 

complete ordered metric. Assume that h: W →  W and      

R: W × W →  W show continuous mappings and R hold 
the property of mixed g- monotone, h commutes with 

R satisfy 

ϕ (d(R(z, v), R(t, u))) ≤  ϕ (M((z, v), (t, u))) 

     − φ (M((z, v), (t, u))) +  θ (N((z, v), (t, u)))               (1) 

where 
M((z, v), (t, u))  =  max {d(hz, ht), d(hv, hu), 
d(R(z, v), hz), d(R(t, u), ht), 
d(R(v, z), hv),   d(R(u, t), hu)}  
and 
N((z, v), (t, u))  =  min {d(R(z, v), ht), d(R(t, u), hz),      
d(R(z, v), hz), d(R(t, u), ht)} 
for each z, v, t, u ∈ W with hz ≥  ht and hv ≤  hu, here φ 

and ϕ represent functions of altering distance type, 

θ: [0, ∞) →  [0, ∞) is continuous function defined as 

θ(x) =  0 iff x =  0. Presuppose that R(W × W) ⊆ h(W) 

and furthermore for each z0, v0 ∈ W with hz0 ≤ R(z0, v0), 
hv0 ≥ R(v0, z0), then h and R possesses coupled 
coincidence point in W. 
Proof. Suppose that z0, v0 ∈ W with h z0 ≤  R(z0, v0) and 

hv0 ≥  R(v0, z0). As R(W × W)  ⊆ h(W), take z1, v1 ∈ W 

then  hz1 =  R(z0, v0)and hv1 =  R(v0, z0). 
We can take z2, v2 ∈ W then hz2 =  R(z1, v1) and hv2 =
 R(v1, z1). As R possesses the property of mixed g-

monotone, we have hz0 ≤  hz1 ≤  hz2 and hv2 ≤  hv1 ≤
 hv0. Persistent this process for two sequences {zn} and 

{vn} in W, we can create 

hzn  =  R(zn−1, vn−1) ≤  hzn+1  =  R(zn, vn) 

and hvn+1  =  R(vn, zn) ≤  hvn  =  R(vn−1, zn−1) 
If, for any integer n, we have 
(hzn+1, hvn+1)  =  (hzn, hvn), then R(zn, vn) = hzn and 

R(vn, zn)  =  hvn , that is (zn, vn) is coincidence point of 
R and h. 
So, we presume that (hzn+1, hvn+1)    ≠ (hzn, hvn), for 

each   n ∈ N, that is, we accept that one of hzn+1 ≠  hzn 

or  hvn+1 ≠  hvn. 
For each n ∈ N, we have after employing the inequality 
(1), 
ϕ(d(hzn+1, hzn)) =  ϕ(d(R(zn, vn), R(zn−1, vn−1))) 
≤  ϕ(M((zn, vn), (zn−1, vn−1)))  
–  φ (M((zn, vn), (zn−1, vn−1)))  
+ θ (N((zn, vn), (zn−1, vn−1))), 
and 
ϕ(d(hvn+1, hvn)) =  ϕ(d(R(vn, zn), R(vn−1, zn−1))) 
≤  ϕ(M((vn, zn), (vn−1, zn−1)))  
− φ (M((vn, zn), (vn−1, zn−1)))  
+ θ (N((vn, zn), (vn−1, zn−1))), 
where,  
M((zn, vn), (zn−1, vn−1)) =  M((vn, zn), (vn−1, zn−1)) 
 = max{d(hzn , hzn−1), d(hvn, hvn−1), 
d(R(zn, vn), hzn), d(R(zn−1, vn−1), hzn−1), 
d(R(vn, zn), hvn), d(R(vn−1, zn−1), hvn−1)} 
= max{d(hzn , hzn−1), d(hvn, hvn−1), 
d(hzn+1 , hzn), d(hvn+1, hvn)} 
 and        
N(hzn+1) = 
min{d(R(zn, vn), hzn−1), d(R(zn−1, vn−1), hzn),    
d(R(zn, vn), hzn), d(R(zn−1, vn−1), hzn−1)} 
= min{d(hzn+1, hzn−1), d(hzn, hzn), 

 d{(hzn+1, hzn), d(hzn, hzn−1)} =  0 
Similarly, 
N((vn, zn), (vn−1, zn−1))  =  0 
Let us consider three cases. 
Case I: M((zn, vn), (zn−1, vn−1))  =  d(hzn+1, hzn). 
We claim that  
M((zn, vn), (zn−1, vn−1))  =  d(hzn+1 , hzn)  =  0. 
If d(hzn+1, hzn)  ≠  0,  
then 
ϕ(d(hzn+1 , hzn))  ≤  ϕ(d(hzn+1 , hzn))                           

−  φ (d(hzn+1 , hzn))  
< ϕ(d(hzn+1 , hzn)) as φ ≥  0. 
which is a contradiction.  
Since M((zn, vn), (zn−1, vn−1))  =  0. 
Case II: M((zn, vn), (zn−1, vn−1))  =  d(hvn+1 , hvn).  
Analogous to the proof as Case I, we can prove this. 

Case III: M((zn, vn), (zn−1, vn−1)) = 

max {d(hzn , hzn−1), d(hvn, hvn−1)} 
so 
ϕ(d(hzn+1 , hzn)) 

≤  ϕ(max{d(hzn , hzn−1), d(hvn, hvn−1) 
−φ(max{d(hzn , hzn−1), d(hvn, hvn−1)})                        (2) 
and 
ϕ(d(hvn+1, hvn) 

≤ ϕ(max{d(hvn, hvn−1), d(hzn, hzn−1)} 

−φ(max{d(hvn, hvn−1), d(hzn, hzn−1)})             (3) 

Now, by (2) and (3), we have for all 𝑛 ∈ 𝑁,  
ϕ(d(hzn+1 , hzn)) ≤ ϕ(max{d(hzn , hzn−1), 
d(hvn, hvn−1)– φ(max{d(hzn, hzn−1), d(hvn, hvn−1)}) 
As φ ≥ 0. 
ϕ(d(hzn+1 , hzn))
≤  ϕ(max{d(hzn , hzn−1), d(hvn, hvn−1)}), 
we have, after employing the concept is non-
decreasing, 
d(hzn+1 , hzn) ≤ 

max{d(hzn, hzn−1), d(hvn, hvn−1)                                    (4) 
Similarly, we get 
ϕ(d(hvn+1, hvn)) 
≤ ϕ(max{d(hvn, hvn−1), d(hzn , hzn−1)}) 
− φ(max{d(hvn, hvn−1), d(hzn , hzn−1)}) 
≤ ϕ(max{d(hvn, hvn−1), d(hzn, hzn−1)}), 
and consequently 
d(hvn+1, hvn) ≤ max{d(hvn, hvn−1), d(hzn, hzn−1))}    (5) 
by (4) and (5), we have 

max{d(hzn+1, hzn), d(hvn+1, hvn)} ≤ 
max{d(hzn, hzn−1), d(hvn, hvn−1)}, 
and thus, the sequence 
max {d(hzn+1, hzn), d(hvn+1, hvn) 
is decreasing and non-negative. Which infers that  
∃ a ≥  0 such that 

lim
n→∞

max {d(hzn+1, hzn), d(hvn+1, hvn)} = a               (6)                                                    

It is certainly observed if ϕ ∶  [0, ∞)  →  [0, ∞) non-

decreasing, ϕ(max(l, m))  =  max(ϕ(l), ϕ(h)) 

for l, m ∈  [0, ∞). 
Applying this, (2) and (3), we get 
max{ϕ(d(hzn+1, hzn)), ϕ(d(hvn+1, hvn))} 
= ϕ(max{d(hzn+1, hzn), d(hvn+1, hvn)})           
 ≤ ϕ(max{d(hzn , hzn−1), d(hvn, hvn−1)})  
 −φ(max{dd(hzn , hzn−1), d(hvn, hvn−1)})                      (7)                              

Letting n → ∞ in (7) and consider (6), we have 

ϕ(a)  ≤  ϕ(a) − φ(a)  ≤  ϕ(a)  ⟹  φ(a)  =  0. 
As φ is a function of altering distance, so a =  0 implies 

max {d(hzn+1 , hzn), d(hvn+1 , hvn) = 0 as                     (8) 
Thus  
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lim
n→∞

max d(hzn+1, hzn) = lim
n→∞

max d(hvn+1, hvn) = 0 

Next, we claim that {hzn}, {hvn} two Cauchy sequences. 

We will prove that for each 0 < ε, there exists p ∈ N 

such type if n, m ≥  p, 
max{d(hzm(s), hzn(s)), d(hvm(s), hvn(s))}  < ε 

Presuppose the exceeding statement is wrong. 
So, we can get sequence {hzm(s)} , {hzn(s))} with  

n(s)  > m(s)  > s such that 

max{d(hzm(s), , hzn(s)), d(hvm(s), hvn(s))}   ≥  ε              (9) 

Furthermore, we can take n(s) according to m(s) such 
that it is smallest index with n(s)  >  m(s) and satisfy (9). 
Then 
max{d(hzm(s), hzn(s)−1), d(hvm(s), hvn(s)−1)}  < ε         (10) 

From triangle inequality 

d(hzn(s), hzm(s)) ≤ 

d(hzn(s), hzn(s)−1) + d(hzn(s)−1, hzn(s))                              (11) 

Similarly 
d(hvn(s),hvm(s))≤ 
d(hvn(s),hvn(s)−1)+d(hvn(s)−1,hvm(s))                           (12)                
From (11) and (12), we have 
max{d(hzn(s) ,hzm(s)),d(hvn(s) ,hvm(s))}≤ 
max{d(hzn(s) ,hzn(s)−1),d(hvn(s) ,hvn(s)−1)} + 
max{d(hzn(s)−1 ,hzm(s)),d(hvn(s)−1 ,hvm(s))}          (13) 
From (9), (10) and (13), we get 
ε≤max{d(hzn(s) ,hzm(s)),d(hvn(s) ,hvm(s))} 
≤max{d(hzn(s) ,hzn(s)−1),d(hvn(s) ,hvn(s)−1)+ε               (14)                                               
Letting n →  ∞ in (14) and consider (8) we have 
max{d(hzn(s) ,hzm(s)),d(hvn(s) ,hvm(s))}=ε             (15)                                               
Again, the triangle inequality, we have 
d(hzn(s)−1, hzm(s)−1) ≤  
d(hzn(s)−1,hzm(s))+d(hzm(s),hzm(s)−1)                              (16)       
and       
d(hvn(s)−1,hvm(s)−1)≤  

d(hvn(s)−1,hvm(s))+d(hvm(s), hvm(s)−1))                    (17)                           

From (16) and (17), we have 
max{d(hzn(s)−1,hzm(s)−1),d(hvn(s)−1,hvm(s)−1)}≤ 
max{d(hzn(s)−1,hzm(s)),d(hvn(s)−1 ,hvm(s))}+ 
max{d(hzm(s) ,hzm(s)−1),d(hvm(s) ,hvm(s)−1)}         (18) 
From (10), we have 
max{d(hzn(s)−1,hzm(s)−1),d(hvn(s)−1,hvm(s)−1)}≤ 
max{d(hzm(s) ,hzm(s)−1),d(hvm(s) ,hvm(s)−1)}+ε         (19)                                              
Apply the triangle inequality 
  d(hzn(s),hzm(s))≤d(hzn(s),hzn(s)−1)+ 
d(hzn(s)−1,hzm(s)−1)+d(hzm(s)−1,hzm(s))                            (20) 
and  
d(hvn(s),hvm(s))≤d(hvn(s),hvn(s)−1) 
+d(hvn(s)−1,hvm(s)−1)+d(hvm(s)−1),hvm(s)).                       (21) 
From (20), (21) and (9), we get 
ε≤max{d(hzn(s) ,hzm(s)),d(hvn(s) ,hvm(s))} 
   ≤max{d(hzn(s) ,hzn(s)−1),d(hvn(s) ,hvn(s)−1)} 

  +max{d(hzn(s)−1,hzm(s)−1), 

d(hvn(s)−1,hvm(s)−1)} 
     +max{d(hzm(s)−1 ,hzm(s)),d(hvm(s)−1),hvm(s))            (22) 
From (22) and (19), we have 
ε−max{d(hzn(s) ,hzn(s)−1),d(hvn(s) ,hvn(s)−1)} 
−max{d(hzm(s)−1 ,hzm(s)),d(hvm(s)−1),hvm(s))}  
≤max{d(hzn(s)−1,hzm(s)−1), 

d(hvn(s)−1,hvm(s)−1)} 

<max{d(hzm(s)−1 ,hzm(s)),d(hvm(s)−1,hvm(s))}+ε           (23) 
Letting s → ∞ in (23) and taking (8), we have 
lim
s→∞

max{d(hzn(s)−1 ,hzm(s)−1), 

 d(hvn(s)−1 ,hvm(s)−1)}=ε                                     (24) 
Now, utilizing the inequality (1), we have 

ϕ(d(hzn(s),hzm(s))) = ϕ(d(R(zn(s)−1, vn(s)−1),  
 d(R(zm(s)−1, vm(s)−1))) 
≤ ϕ(M((zn(s)−1,vn(s)−1),(zm(s)−1,vm(s)−1))) 

−φ(M((zn(s)−1,vn(s)−1),(zm(s)−1,vm(s)−1))) 

+θ(N((zn(s)−1,vn(s)−1),(zm(s−1,vm(s)−1)))          (25) 

Where 
 M((zn(s)−1,vn(s)−1),(zm(s)−1,vm(s)−1)) = 

max{d(hzn(s)−1,hzm(s)−1), d(hvn(s)−1,hvm(s)−1),  

d(hzn(s),hzn(s)−1),d(hzm(s),hzm(s)−1), 
 d(hvn(s),hv(s)−1),d(hvm(s),hvm(s)−1)} 
and  
N((zn(s)−1,vn(s)−1),(zm(s)−1,vm(s)−1))= 

min{d(hzn(s),hzm(s)−1),d(hzm(s),hzn(s)−1), 
d(hzn(s),hzn(s)−1),d(hzm(s),hzm(s)−1)}. 
Similarly  

ϕ(d(hvn(s),hvm(s)))=ϕ(d(R(vn(s)−1,zn(s)−1), 
 d(R(vm(s)−1,zm(s)−1))) 
≤ϕ(M((vn(s)−1,zn(s)−1),(vm(s)−1,zm(s)−1))) 
−φ(M((vn(s)−1,zn(s)−1),(vm(s)−1,zm(s)−1))) 
+θ(N((vn(s)−1,zn(s)−1),(vm(s)−1,zm(s)−1)))        (26)           

Where 
M((vn(s)−1,zn(s)−1),(vm(s)−1,zm(s)−1)=   

max{d(hzn (s)−1,hzm(s)−1),d(hvn(s)−1,hvm(s)−1), 

d(hvn(s),hvn(s)−1),d(hvm(s),hvm(s)−1),                

d(hzn(s),hzn(s)−1),d(hzm(s),hzm(s)−1)} 

and 
N((vn(s)−1,zn(s)−1),(vm(s)−1,zm(s)−1))=   

min{d(hvn (s),hvm(s)−1),d(hvm(s),hvn(s)−1), 
d(hvn(s),hvn(s)−1),d(hvm(s),hvm(s)−1)} 
From (25) and (26), we have 
max{ϕ(d(hzn(s),hzm(s)),d(hvn(s),hvm(s)))}  

≤ ϕ(an)−φ(an)+θ(bn), 
where 
an = max{d(hzn(s)−1,hzm(s)−1), 

d(hvn(s)−1,hvm(s)−1) d(hzn(s),hzn(s)−1), 

d(hvn(s),hvn(s)−1), d(hzm(s),hzm(s)−1), 

d(hvm(s),hvm(s)−1)}, 
and  
bn=min{d(hzn(s) ,hzm(s)−1),d(hvn(s) ,hvm(s)−1), 
d(hzm(s),hzn(s)−1),d(hvm(s),hvn(s)−1), 
d(hzn(s),hzn(s)−1),d(hvn(s),hvn(s)−1), 
d(hzm(s),hzm(s)−1),d(hvm(s),hvm(s)−1)} 
≤min{d(hzn(s) ,hzn(s)−1),d(hvn(s) ,hvn(s)−1), 
d(hzm(s),hzm(s)−1),d(hvm(s),hvm(s)−1)}. 
Finally, lettings → ∞ in last two in equalities and using 

(24), (15) and (8), the continuity of ϕ,φ and θ, we have 

 ϕ(ε) ≤ ϕ(max(ε,0,0)) − φ(max(ε,0,0)) + θ(min(0,0))  

≤ ϕ(ε) 
and as a result, φ(ε) = 0. As φ is function of an altering 
distance type, ε = 0 and which is contradiction. This 
shows our requirement. 

As (W, d) is a complete metric, ∃ z,v ∈ W, then 
z = limhzn= lim R(zn,vn) = R(limzn, limvn), as n → ∞ 

v = limhvn= lim R(vn,zn) = R(limvn, limzn). as n → ∞   (27) 
Since h is continuous, therefore by (27), we get 

lim h(hzn) = hz, lim h(hvn) = hv as n → ∞                        (28) 
Commutativity of h and R generates 
h(hzn+1) = h(R(zn,vn)) = R(hzn,hvn)                 
h(hvn+1) = h(R(vn,zn)) = R(hvn,hzn)                              (29) 
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Now {h(hzn+1)} convergent to R(z, v) and {h(hvn+1)} 

convergent to R(v, z) by the continuity of R. Apply (28) 

and using uniqueness of the limit, R(z, v) =  hz and 

R(v, z) =  hv, that is, h and R represent coupled 
coincidence point. Hence proof is complete. 
In the subsequent result we drop the continuity of R . 
Theorem 2.2. Presuppose every condition of result 2.1 
are satisfied. Furthermore, presume that under the 
partial order ≤, h is monotone, and W has the 
subsequent condition 

(i) vn ≥ v, ∀ n, if non-increasing sequence {vn} in W 

converges to some point v ∈W, 
(ii) zn ≤ z, ∀ n, if non-decreasing sequence{zn} in W 

converges to some point z ∈ W, 
 after that conclusion of result (1) also hold. 
Proof. Succeeding the proof of result (1). Then 

lim
n→∞

hzn = z and lim
n→∞

hvn =v 

To prove hz =  R(z, v), hv =  R(v, z). 
{hzn} non-decreasing and hzn→ z and {hvn} non-
increasing and hvn→ v, from the assumptions (1) and 
(2) that hzn≤ z and hvn≥ v ∀n ∈N, no loss of generality in 
addition,, that h is nondecreasing one can assume, 
regarding partial order ≤, h2zn ≤ hz and h2vn ≥ hv, ∀ n ∈
N, where h2x = h(hx) for all x ∈ W. 
Utilizing the condition (1) we obtain 
ϕ(d(R(z,v),g2zn+1) = ϕ(d(R(z,v),R(hzn,hvn))) 

 ≤ ϕ(M((z,v),(hzn,hvn)))−φ(M((z,v),(hzn,hvn))) 
    +θ(N((z,v),(hzn,hvn)))                           (30) 
and 
ϕ(d(R(v,z),h2vn+1) = ϕ(d(R(v,z),R(hvn,hzn))) 

≤ ϕ(M((v,z),(hvn,hzn)))−φ(M((v,z),(hvn,hzn)))       
+θ(N((v,z),(hvn,hzn)))                           (31) 
where 
M((z,v),(hzn,hvn)) = M((v,z),(hvn,hzn)) =  
max {d(hz,hzn),d(hv,hvn),d(R(z,v),hz), 
d(R(hzn,hvn),hhzn),d(R(v,z),hv), d(R(hvn,hzn),hhvn)}, 
and  
 N((z,v),(hzn,hvn)) = min{d(R(z,v),h2zn), d(h2zn+1,hz), 
d(R(z,v),hz),d(h2zn+1,h2zn)}                                        (32) 
Similarly 
N((v,z),(hvn,hzn)) = min{d(R(v,z),h2vn),d(h2vn+1,hv), 
d(R(v,z),hv),d(h2vn+1,h2vn)}                                        (33) 
Now we claim that 
max{d(R(z, v), hz), d(R(v, z), hv)} =  0                        (34) 
If this is wrong, then max{d(R(z,v),hz), d(R(v,z),hv)} > 0. 

Since lim
n→∞

hzn = z, lim
n→∞

hvn =v,  

there exists N in set of natural number for each n >N,  
M((z,v),(hzn,hvn)) = M((v,z),(hvn,hzn)) = 
max{d(R(z,v),hz),d(R(v,z),hv)} 
Connecting this with (30), (31) and (32), we have for all 
n >N, 
ϕ(max{d(R(z,v),h2zn+1),d(R(v,z),h2vn+1)}) = 

max{ϕ(d(R(z,v),h2zn+1),ϕ(d(R(v,z),h2vn+1))} 

≤ ϕ(max{d(R(z,v),hz),d(R(v,z),hv)} - φ(max{d(R(z,v),hz),  
d(R(v,z),hv)} + θ(min{d(R(z,v),h2zn),d(h2zn+1,hz), 
d(R(z,v),hz),d(h2zn+1,h2zn), d(R(v,z),h2vn), d(h2vn+1,hv), 
d(R(v,z),hv), d(h2vn+1,h2vn)})  
Letting n →  ∞, it follows that  

 ϕ(max {d(R(z, v), hz), d(R(v, z), hv)})  
≤  ϕ(max {d(R(z, v), hz), d(R(v, z), hv)})  
−  φ(max {d(R(z, v), hz), d(R(v, z), hv)}
+  θ(min {d(R(z, v), hz), d(hz, hz), d(R(z, v), hz),
d(hz, hz) d(R(v, z), hv), d(hv, hv), d(R(v, z), hv), d(hv, hv)})  
Apply property of θ, we get 

ϕ(max {d(R(z, v), hz), d(R(v, z), hv)})  
≤  ϕ(max {d(R(z, v), hz), d(R(v, z), hv)})
−  φ(max{d(R(z, v), hz), d(R(v, z), hv)}} 
 ≤  ϕ(max{d(R(z, v), hz), d(R(v, z), hv)}) 
and consequently,  
φ(max {d(R(z, v), hz), d(R(v, z), hv)}  =  0.  
A contradiction since φ is a function of an altering 
distance type. So, (34) holds, then, it proceeds 
that hz =  R(z, v) and hv =  R(v, z). 
Theorem 2.3. Under the hypothesis of Theorem 2.2, 
presuppose that hv0 ≤ hz0. Then, it proceeds hz =
 R(z, v) =  R(v, z) =  hv. Furthermore, if R and h are w- 
compatible, then R and h possess coupled coincidence 
point of the type (u, u). 
Proof. If hv0 ≤ hz0, then hv ≤ hvn ≤ hv0 ≤ hz0 ≤ hzn ≤ hz for 
each n ∈ N. Thus, if hz ≠ hv (and then d(hz, hv) ≠  0 and 

d(hv, hz) ≠  0), using inequality (1), we obtain 

ϕ(d(hv, hz)) =  ϕ (d(R(v, z), R(z, v))) 

≤  ϕ (M((v, z), (z, v))) − φ (M((v, z), (z, v)))

+  θ (N((v, z), (z, v))), 

Where M((v, z), (z, v)) = max{d(hv, hz), d(hz, hv)}, 

and N((v, z), (z, v)) =  0. 

Hence 

ϕ(d(hv, hz)) ≤  ϕ(max{d(hv, hz), d(hz, hv)})   −

φ(max{d(hv, hz), d(hz, hv)})                                       (35) 

Since hv ≤  hz, hence using the same idea we have 

φ(d(hz, hv)) ≤  φ(max{d(hv, hz), d(hz, hv)}) −

ϕ(max{d(hv, hz), d(hz, hv)})                                       (36) 
From (35) and (36), we have 
ϕ(max{d(hv, hz), d(hz, hv)})

=  max{ϕ(d(hv, hz)), ϕ(d(hz, hv))} 

≤   ϕ(max{d(hv, hz), d(hz, hv)})
−  φ(max{d(hv, hz), d(hz, hv)})                                                    
≤  ϕ(max{d(hv, hz), d(hz, hv)}). 
and consequently,  
φ(max{d(hv, hz), d(hz, hv)}) =  0.  
As φ is a function of altering distance type, we obtain 

d(hv, hz) =  0, d(hz, hv) =  0, a contradiction. Hence 

hz =  hv, that is, hz =  R(z, v) =  R(v, z) =  hv. Now, let 
u =  hz =  hv. Since R and h are w- compatible, so 

hu =  h(hz) =  h(R(z, v)) =  R(hz, hv) =  R(u, u) 

Therefore, h and R possess (u, u) as a coupled 
coincidence point. 
To guarantee uniqueness of common coupled fixed 
point. We need the subsequent idea for the partial order 

relation, if (W, ≤) partially ordered set, for (z, v), 

(z´, v´)  ∈ W × W, 
(z, v) ≤  (z´, v´) ⇐⇒ z ≤  z´ and v´ ≤ v                     (37) 
Theorem 2.4. Including the equation (37) to the 
assumption of result (1) (respectively result (2)), assume 
that, to each (z, v), (z´, v´) ∈ W × W, there exists (d, s) ∈
W × W i.e. comparable to (z, v) and (z´, v´). Then R and 
h have preciously one common coupled fixed point. 
Proof. From result (1), R and h is nonempty set of 
coupled coincidence points. Now we will prove if 
(z, v)and(z´, v´) two coupled coincidence points, then 

h(z) =  R(z, v), h(v) =  R(v, z) 
and  

h(z´) =  R(z´, v´), h(v´) =  R(v´, z´), 
then  
hz =  hz´ and hv =  hv´                                       (38) 
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Take an element (d, s) ∈ W ×W comparable with both 
of them. 

Let d0 = d, s0 = s and choose d1,s1 ∈ W so that  
hd1 = R(d0,s0) and hs1 = R(s0,d0). 
Then, in a similar way we can define sequences {hdn} 
and {hsn} as used in Theorem (1), as follows 
hdn+1= R(dn,sn) and hsn+1= R(sn,dn). 

Since(hz, hv) =  (R(z, v), R(v, z)) and (R(d, s), R(s, d)) =

 (hd1, hs1) are comparable, then hz ≤  hd1 and hv ≥
 hs1. With the help of mathematical induction, it is 
simple to prove 
hz ≤  hdn, hv ≥  hsn,   ∀ n ∈ N. 
Using contractive condition (1) 
ϕ(d(hz,hdn+1)) = ϕ(d(R(z,v),R(dn,sn)))                                                                                         

≤ϕ(M((z,v),(dn,sn)))−φ(M((z,v),(dn,sn))) 
+θ(N((z,v),(dn,sn))),                                                    (39) 
where 
M((z,v),(dn,sn)) = max{d(hz,hdn),d(hv,hsn),d(R(z,v),hz), 
d(R(dn,sn),hdn),d(R(v,z),hv),d(R(sn,dn),hsn)} 
 = max{d(hz,hdn),d(hv,hsn)}. 
and 
N((z,v),(dn,sn)) = min{d(R(z,v),hdn),d(R(dn,sn),hz),      
d(R(z,v),hz), d(R(dn,sn),hdn)} 
= 0. 
Therefore 

ϕ(d(hz,hdn+1)) ≤ ϕ(max{d(hz,hdn),d(hv,hsn)}) 
−φ(max{d(hz,hdn),d(hv,hsn)}) 
 ≤ ϕ(max{d(hz,hdn),d(hv,hsn)})                                   (40)  
and analogously 
ϕ(d(hv,hsn+1)) ≤  

ϕ(max{d(hv,hsn),d(hz,hdn})- φ(max{d(hv,hsn),d(hz,hdn}) 

 ≤ ϕ(max{d(hv,hsn),d(hz,hdn)})                                (41) 

From (40) and (41) and utilizing concept of ϕ is non-
decreasing, we find  
ϕ(max{d(hz,hdn+1),d(hv,hsn+1)}) = 

max{ϕ(d(hz,hdn+1),ϕ(d(hv,hsn+1))} ≤ 

ϕ(max{d(hz,hdn),d(hv,hsn)})−φ(max{d(hz,hdn),d(hv,hsn)}  

≤ ϕ(max{d(hz,hdn),d(hv,hsn)})                                    (42) 
This implies that 
max{d(hz,hdn+1),d(hv,hsn+1)} ≤ max{d(hz,hdn),d(hv,hsn)}, 
and consequently the sequence 
max{d(hz,hdn+1),d(hv,hsn+1)} is decreasing and non-
negative so, 

lim
n→∞

max{d(hz,hdn+1),d(hv,hsn+1)} = a,                          (43)                                         

for certain a ≥ 0. Using (43) and taking n →  ∞ in (42), we 
have 
ϕ(a) ≤  ϕ(a) − φ(a) ≤  ϕ(a), ⟹  φ(a) =  0 
and thus a = 0. 
Lastly,                                            

lim
n→∞

max{d(hz,hdn+1),d(hv,hsn+1)} = 0                          (44) 

This implies, when n → ∞ 
limd(hz,hdn+1)=limd(hv,hsn+1)=0,                                 (45)                   
Similarly, as     n → ∞   
lim d(hz´,hdn+1) = lim d(hv´,hsn+1) = 0                          (46) 
From (45) and (46), we have  
    hz =  hz´, hv =  hv´. 
Since hz =  R(z, v)and hv= R(v, z), 
by commutativity of h and R, we have 

h(hz) =  h(R(z, v)) =  R(hz, hv)and  

h(hv) =  h(R(v, z)) =  R(hv, hz)                                  (47) 

Denote hz =  a and hv =  b. Then, from (47), it follows 
that 
ha =  R(a, b) and  hb = R(b, a)                                  (48) 

Thus R and h have (a, b) as other coupled coincidence 

point, and a =  hz =  ha and b =  hv =  hb.  
Hence, R and h have (a, b) as a coupled common fixed 
point. 
To show the only one coupled fixed point, presume     
(m, p) is other coupled common fixed point for R and h. 
Then m =  hm =  R(m, p) and p =  hp =  R(p, h). Since 

the pair  (m, p) is coupled coincidence point of R and h, 

since hm =  ha and hp =  hb. So, m =  hm =  ha =  a 

and        p =  hp =  hb =  b. Therefore, we get only one 
coupled fixed point.  
Theorem 2.5. Taking the hypothesis of result (2), 
presuppose that in addition to each (z, v), (z’, v’) ∈
W × W, (d, s) ∈ W × W that is comparable to 

(R(z, v), R(v, z)) and (R(z’, v’), R(v’, z’)). If R and h are w- 

compatible, we can say R and h have only one common 
coupled fixed point of the type (s, s). 
Proof. By result (2), R and h is nonempty which is set of 
coupled fixed points. Take (z, v) and (z’, v’) coupled 
coincidence points of R and h. Apply the technique of 
the result (4), we can show 
 hz =  hz’and hv =  hv                                             (49) 

if (z, v) is a coupled coincidence point of R and h, then 
(v, z) is also a coupled coincidence point of R and h. 

Therefore by (49) we have hz =  hv. Put t =  hz =  hv. 

Since hz =  R(z, v), hv =  R(v, z) and R and h are w-

compatible, we have hs =  h(hz) =  h(R(z, v)) =

 R(hz, hv) =  R(s, s). Thus, (s, s) is a common coupled 

fixed point of R and h. So, hs =  hz =  hv =  s and 
hence we have s =  hs =  R(s, s). Hence, (s, s) is a 
common coupled fixed point of R and h. 
To show common coupled fixed point of R and h are 
unique, we take another coupled fixed point (p, q) be of 

R and h, that is, p =  hp =  R(p, q)and q =  hq =
 R(q, p). Clearly, we have hs =  hp and hs =
 hq. Therefore s =  p =  q. Thus, R and h have a unique 

common coupled fixed point of the type (s, s). 
Example 2.6. Suppose W =  {0, 1, 2} and define d ∶
W × W →  R+ as d(z, v) = max{z, v}. Let R ∶ W × W → W 

as R(z, v) =  z for all  z, v ∈  W and h ∶ W → W with 

h(0) =  1, h(1) =  2, h(2) =  2 for all z ∈ W. 
Let ϕ, φ ∶  [0, ∞) →  [0, ∞) and θ ∶  [0, ∞) →  [0, ∞) be 

defined by ϕ(u) =  u and φ(u) =  
1

2
(u), θ(u) =  u. Then, 

ϕ, φ, θ hold the properties discussed in result (1). 
First, we verify that h commutes with R, that is,  

h(R(z, v)) =  R(hz, hv). 

Case-1: If z =  0, v =  0 then, hR(0,0) =  g(0) =

 1 and R(h(0), g(0)) =  1. 

Case-2: If z =  0, v =  1 then, hR(0,1) =  g(0) =

 1 and R(h(0), g(1)) =  1. 

Case-3: If z =  1, v =  0 then, hR(1,0) =  g(1) =

 2 and R(h(1), g(0)) =  2. 

Case-4: If z =  1, v =  1 then, hR(1,1) =  g(1) =

 2 and R(h(1), g(1)) =  2. 

Case-5:If z =  0, v =  2 then, hR(0,2) =  g(0) =

 1 and R(h(0), g(2)) =  1. 

Case-6:If z =  2, v =  0 then, hR(2,0) =  g(2) =

 2 and R(h(2), g(0)) =  2. 

Case-7:If z =  2, v =  1 then, hR(2,1) =  g(2) =

 2 and R(h(2), g(1)) =  2. 

Case-8: If z =  1, v =  2 then, hR(1,2) =  g(1) =

 2 and R(h(1), g(2)) =  2. 
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Case-9: If z =  2, v =  2 then, hR(2,2) =  g(2) =

 2 and R(h(2), g(2)) =  2. 

In all above cases it satisfies the condition. 
Next, we verify that R and h satisfies inequality (1) and 
let hz ≥  hu and hz ≤  hv. Then, the following cases 
arises. 

Case-1: If z =  v =  t =  u =  0, then 

d(R(0,0), R(0,0)) =  d(0,0) =  0 and 

M((z, v), (t, u)) =  M((0,0), (0,0))

= max{d(h(0), h(0)), d(h(0), g(0)), d(R(0,0), g(0)),

d(R(0,0), h(0)), d(R(0,0), h(0)), d(R(0,0), h(0))} 

 = max{d(1,1), d(1,1), d(0,1), d(0,1), d(0,1), d(0,1)} 
  = max{1,1,1,1,1,1} =  1. 
also 

N((z, v), (t, u)) =  N((0,0), (0,0))

= min{d(R(0,0), h(0)), d(R(0,0), h(0)),

d(R(0,0), h(0)), d(R(0,0), h(0))} 

= min{d(0,1), d(0,1), d(0,1), d(0,1)} 
 = min{1,1,1,1} =  1 

As, ϕ(0) =  0 < ϕ(1)–  φ (1) +  θ (1) =
3

2
 

Case-2: If z =  1, v =  0, t =  1, u =  0, 

then d(R(1,0), R(1,0)) =  d(1,1) =  1 and 

M((z, v), (t, u)) =  M((1,0), (1,0))

= max{d(h(1), h(1)), d(h(0), h(0)), d(R(1,0), h(1)),

d(R(1,0), h(1)), d(R(0,1), h(0)), d(R(0,1), h(0))} 

 = max{d(2,2), d(1,1), d(1,2), d(1,2), d(0,1), d(0,1)} 
= max{2,1,2,2,1,1} =  2. 
also 

N((z, v), (t, u)) =  N((1,0), (1,0)) =

min{d(R(1,0), h(1)), d(R(1,0), h(1)),

d(R(1,0), h(1)), d(R(1,0), h(1))}  

= min{d(1,2), d(1,2), d(1,2), d(1,2)} 
= min{2,2,2,2} =  2. 
As, ϕ(1) = 1 < ϕ(2) − φ(2) + θ(2) = 3, 

Case-3: If z =  1, v =  0, t =  1, u =  1, then as 

d(R(1,0), R(1,1)) =  1, M((1,0), (1,1)) =  2 

and N((1,0), (1,1)) =  2, 

Case 4: 
If z =  1, v =  1, t =  1, u =  1, 

  then as d(R(1,0), R(1,1)) =  1, 

M((1,0), (1,1)) =  2  

and  N((1,0), (1,1)) =  2,  

Case-5: If z =  v =  t =  u =  2, then as  

d(R(1,0),   R(1,1)) =  1, M((1,0), (1,1)) =  2 and  

N((1,0), (1,1)) =  2, 

Case-6: If z =  2, v =  0, t =  2, u =  0,  

then as d(R(1,0), R(1,1)) =  1, M((1,0), (1,1)) =

 2 and  N((1,0), (1,1)) =  2, 

Case-7:If z =  2, v =  1, t =  2, u =  1,

then as d(R(1,0), R(1,1)) =

 1, M((1,0), (1,1))2 and  N((1,0), (1,1)) =  2, 

Case-8: If z =  t =  u =  2, v =  0,  

then as      d(R(1,0), R(1,1)) =  1, M((1,0), (1,1))

=  2 and  N((1,0), (1,1)) =  2, 

Case-9: If z =  2, v =  t =  u =  1,  

then as      d(R(1,0), R(1,1)) =  1, M((1,0), (1,1))

=  2 and  N((1,0), (1,1)) =  2, 

In all the cases inequality (1) is verified. 

So, ϕ, φ and θ satisfy all the hypothesis of result (1). 
Further (2,2) is coupled coincidence point of R and h. 

Example 2.7. Suppose W =  R with usual metric. We 

Define R ∶  W × W →  W as  

R(z, v) =
1

5
(z2 

+  v2 
+  zv)  for all z, v ∈ W and h ∶ W →

W with h(z) =  z for all z ∈ W. 
Suppose ϕ, φ ∶  [0, ∞) →  [0, ∞) and  

θ ∶  [0, ∞) →  [0, ∞) defined as ϕ(u) =  u and φ(u) =

 
1

4
(u), θ(u) =  u. Then, ϕ, φ, θ have the properties 

present in Theorem (1).  
Now, let hz ≥  ht and hv ≤  gu. So, we obtain 

ϕ (d(R(z, v), R(t, u))) =  d(R(z, v), R(t, u)) 

=  |
1

5
(

1

z2 
+  v2 

+  zv
) −

1

5
(t2 

+  u2 
+  tu)| 

= 
1

5
|(z2 

–  t2) + (v2 
–  u2) + (zv –  tu)| 

≤
1

5
(

1

|z −  t | + |v −  u | + |zv −  tu|
) 

≤  
1

5
(|(z −  t)|  +  |(v −  u)|  +  |v||z −  t|  +  

     |t||v −  u|) 

≤
1

5
(|z −  t| +  |v −  u| + |z −  t| +  |v −  u|) 

=
1

5
(2d(hz, ht) +  2d(hv, hu)) 

≤
3

4
M((z, v), (t, u)) 

=  M((z, v), (t, u)) −
1

4
M((z, v), (t, u)) 

=  ϕ(M((z, v), (t, u))  −  φ (M((z, v), (t, u))) 

≤ ϕ(M((z, v), (t, u)) − φ(M((z, v), (t, u)))  
+ θ(N((z, v), (t, u))) 

where 

M((z, v), (t, u))

= max{d(hz, ht), d(hv, hu), d(R(z, v), hz), d(R(t, u), ht),
d(R(z, v), ht), d(R(t, u), hz)} 
and 

N((z, v), (t, u)) = min{d(R(z, v), hz), d(R(t, u), ht),

d(R(z, v), ht), d(R(t, u), hz)} 
Thus, all of the assumptions of result (1) are verified. 

Furthermore, R and h, have (0,0)as the coupled 
coincidence point. 
Theorem 2.8. Suppose (W, ≤, d) be complete metric 

space and h ∶ W → W and R ∶ W × W → W be two 
continuous maps and F possess the property of mixed 
g- monotone and h commutes with R, such that 

ϕ (d(R(z, v), R(t, u))) ≤  ϕ (M((z, v), (t, u))) −

 φ (M((z, v), (t, u)))                                                    (50) 

where 

M((z, v), (t, u))

= max{d(hz, ht), d(hv, gu), (R(z, v), hz),
d(R(t, u), ht), d(R(v, z), hv), d(R(u, t), hu)} 
∀z, v, t, u ∈ W with hz ≥  ht and hv ≤  gu, here φ and ϕ 
are functions of altering distance type. Presuppose that       
R(W ×  W) ⊆ h(W). Furthermore for each z0, v0 ∈ W with   
hz0 ≤ R(z0, v0) and hv0 ≥ R(v0,z0). Presume that W has 
the subsequent properties of result 2.2 Then R and h 
have a coupled coincidence point in W. 
Corollary 2.9. Assume that (W, ≤, d) be ordered 

complete metric space. Let R ∶  W × W →  W be a 

mapping satisfying (50) (with g =  IX) for all z, v, t, u ∈ W 
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with z ≥ t and v ≤  u. W possess the property of mixed 
monotone and assume either 
(i) R is continuous or 
(ii) W has the subsequent properties of result 2.2 
If there exist z0, v0 ∈ W such that z0 ≤ R(z0, v0) and                      
v0 ≥ R(v0,z0), then R has coupled fixed point. 
Corollary 2.10. Assume (W, ≤, d) be a metric space 

which is ordered complete. Let R ∶  W × W →  W is a 
continuous mapping on W possessing the property mixed 
monotone, then there exists p ∈ [0,1) satisfy  

d(R(z, v), R(t, u)))  
≤  p max {d(hz, ht), d(hv, gu), d(R(z, v), hz),
d(R(t, u), ht), d(R(v, z), hv), d(R(u, t), hu)} 
∀z, v, t, u ∈ W with z ≥  t and v ≤  u. Pre suppose either 
R is continuous or W has the subsequent condition (1) 
and (2) of result (2) furthermore for each z0,v0 ∈ W with     
z0 ≤ R(z0,v0) and v0 ≥ R(v0,z0), then R has a coupled fixed 
point. 
Proof. Using result (8) and choose as ϕ = identity, φ =
 (1 − k)ϕ, we get the result.  
Corollary 2.11. Suppose R satisfy all conditions of 
Theorems (8), left (50) which is replaced by the 
subsequent condition. Then Lebesgue- integrable 
function µ on R+ which is positive, occurred such that 

∫ μ(t)dt > 0
ε

0
, for each ε > 0, then, R has coupled fixed 

point. 

∫ μ(u)du ≤ 
ϕ(d(R(z,v),R(t,u)))

0
∫ μ(u)du

ϕ(d(R(z,v),R(t,u)))

0
−

∫ μ(u)du
φ(d(R(z,v),R(t,u)))

0
                                             (51) 

where 

M((z, v), (t, u))

= max {
d(hz, ht), d(hv, hu), d(R(z, v), hz), d(R(t, u), ht),

d(R(v, z), hv), d(R(u, t), hu)
}.  

Proof. Consider ϕ :[0,∞) → [0,∞) defined by 

 Γ = ∫ μ(t)dt
x

0

 

show altering distance function. 
Then (51) becomes 

Γ (ϕ (d(R(x, y), R(u, v)))) ≤  

       Γ (ϕ (M((x, y), (u, v)))) −  Γ (φ (M((x, y), (u, v)))), 

where 

M((z, v), (t, u))

= max{d(hz, ht), d(hv, hu), d(R(z, v), hz),
d(R(t, u), ht), d(R(v, z), hv), d(R(u, t), hu)}. 
Taking ϕ1  =  Γoϕ, φ1  =  Γoφ and applying Theorems 
(2.8), we get the result. 

III. EXPERIMENT TO INTEGRAL EQUATIONS 

In this segment we discuss the existence and oneness 
of solutions for nonlinear integral equation by utilizing 
the outcome showed under Section 2. 
Take an integral equation of the following type: 

z(h) = ∫ (k1(h, a) + k2(h, a)) (R(a, z(a)) +1

0

g(a, z(a))) da + T(h), h ∈ [0,1]                 (52)                                                     

We will analyze (52) under the accompanying 
presumptions: 
(a) ki: [0,1] × [0,1] →  R(i =  1,2) are smooth and  

k1(h, s) ≥  0 and k2(h, s) ≤  0. 
(b) T ∈ C[0,1]. 
(c) g, R ∶  [0,1] × R →  R be two smooth functions. 

(d) Two constants ν, µ > 0 exist such that for all 

z, v ∈ R, z ≥  v 
0≤ R(h, z) − R(h, v) ≤ ν[ln[(z − v)+ 1] 

–  μ [ln[(z − v)+ 1] ≤ R(h, z) − R(h, v) ≤ 0 
(e) There exist γ, δ ∈ C[0,1]such that 

γ(h) ≤ ∫ (k1(h, a) (R(a, γ(a)) + g(a, δ(a))) da
1

0

+ ∫ k2(h, a)
1

0
) (R(a, δ(a))

+ g(a, γ(a))) da + T(h), 

δ(h) ≥ ∫ (k1(h, a) (R(a, δ(a)) + g(a, γ(a))) da
1

0

+ ∫ k2(h, a)
1

0
) (R(a, γ(a)) + g(a, δ(a))) da

+ T(h), 
(f) 2 max(ν, µ) ‖k1 − k2‖∞   ≤  1, where 

‖k1 − k2‖∞   =  sup {(k1(h, a) − k2(h, a)) ∶  
h, a ∈  [0,1]}. 
Suppose W =  C[0,1] be the space with the standard 
metric of smooth functions defined on [0, 1] defined by 
d(z, v) =  sup

h∈[0,1]
|z(h) − v(h)| , for z, v ∈ C[0,1], 

With a partial order this space equipped given by 

z, v ∈ C[0,1], z ≤  v ⇐⇒ z(h) ≤  v(h), 
for some h ∈ [0,1]. 
If in W × W we take the order given by 
(z, v), (t, u) ∈ W × W,  
(z, v) ≤  (t, u) ⟺  z ≤  t and v ≥  u, 
and for some z, v ∈  W we have max(z, v) , min(z, v) ∈ W, 
so condition (37) is satisfied. 
Furthermore, in [23] it is showed that (C[0,1], ≤) satisfies 
presumption (1). our result now formulated as . 
Theorem 3.1. Under presumptions (a)-(f), Eqn. (52) 
hold solution in C[0,1] which is unique. 
Proof. We take the mapping R ∶  W × W → W defined 
as 

R(z, v)(h) = ∫ (k1(h, a) (R(a, z(a)) + g(a, v(a))) da +1

0

∫ k2(h, a)
1

0 ) (R(a, v(a)) + g(a, z(a))) da + T(h),  

for h ∈ [0,1]. 
By virtuousness of our presumptions, R is well defined 
for z, v ∈ W then R(z, v) ∈ W. 
On priority, we show that R has the property of mixed 
monotone. 
for z1 ≤ z2  and h ∈ [0,1], we get 
R(z1, v)(h)─R(z2, v)(h)

= ∫ (k1(h, a) (R(a, z1(a)) + g(a, v(a))) da
1

0

+ ∫ k2(h, a)
1

0
) (R(a, v(a)) + g(a, z1(a))) da

+ T(h)─ ∫ (k1(h, a) (R(a, z2(a))
1

0

+ g(a, v(a))) da─ ∫ k2(h, a)
1

0
) (R(a, v(a))

+ g(a, z2(a))) da ─ T(h) , 

=∫ (k1(h, a)(R(a, z1(a)) ─R(a, z2(a)))da +1

0

∫ k2(h, a)
1

0
)g(a, z1(a)) ─g(a, z2(a)))da             (53)    

Taking into account that z1 ≤ z2and our presumptions, 

R(a,z1(a)) − R(a,z2(a)) ≤ 0,  

g(a,z1(a)) − g(a, z2(a)) ≥ 0, 
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and from (53) we get 
R(z1,v)(h) − R(z2,v)(h) ≤ 0 

and this proves that R(z1,v) ≤ R(z2,v). 

Similarly, if v1 ≥ v2 and h ∈  [0,1], 
R(z,v1) ≤ R(z,v2).  
Thus, R has the property of mixed monotone.  
We estimate d(R(z, v), R(t, u)) for z ≥  t and v ≤  u. 
As R has the property of mixed monotone,  
R(z, v)  ≥  R(t, u) and we have      

d(R(z, v), R(t, u))  
=  sup

h∈[0,1]
|R(z, v)(h) − R(t, u)(h)| 

=  sup
h∈[0,1]

(R(z, v)(h) − R(t, u)(h)) 

= sup
h∈[0,1]

[∫ (k1(h, a)(R(a, z(a)) + g(a, v(a)))da +1

0

∫ k2(h, a)
1

0
)(R(a, v(a)) + g(a, z(a)))da +

T(h) ─ ∫ (k1(h, a)(R(a, t(a)) +1

0

g(a, u(a)))da─ ∫ k2(h, a)
1

0
)(R(a, u(a)) +

g(a, t(a)))da─T(h)]                                      (54)  

= sup
h∈[0,1]

[∫ k1(h, a)[(R(a, z(a) − R(a, t(a))) − (g(a, u(a))
1

0

− g(a, v(a)))] da

− ∫ k2(h, a)[(R(a, u(a) − R(a, v(a)))
1

0

− (g(a, z(a)) − g(a, t(a)))]da] 

By our presumptions (that z ≥ t and v ≤ u) 
R(a,z(a))−R(a,t(a))≤ν ln[(z(a)−t(a))+1]

 

g(a,u(a))−g(a,v(a))≥−µ ln[(u(a)−v(a))+1] 
R(a,u(a))−R(a,v(a))≤ν ln[(u(a)−v(a))+1]

 

g(a,z(a))−g(a,t(a))≥−µ ln[(z(a)−t(a))+1]. 
Consider these last in equalities, k2≤ 0 and (54), we have 

d(R(z, v), R(t, u)) ≤ sup
h∈[0,1]

[∫ k1(h, a)ν [ln[(z(a) − t(a)) +1

0

1]] + µ [ln[(u(a) − v(a)) + 1]] da +

∫ (−k2(h, a))ν [ln[(u(a) − v(a)) + 1]] µ[ln[(z(a) − t(a)) +1

0

1]]da]                                                                         (55) 

= max (v, μ) sup
h∈[0,1]

[∫ (k1(h, a) − k2(h, a))ln[(z(a) −1

0

t(a)) + 1]da + ∫ (k1(h, a) − k2(h, a))
1

0
  ln[(u(a) − v(a)) +

1]da]  

Defining  

I = ∫ (k1(h, a) − k2(h, a)) ln[(z(a) − t(a)) + 1]da1

0
  

II = ∫ (k1(h, a) − k2(h, a)) ln[(u(a) − v(a)) + 1]da1

0
  

and utilizing the Cauchy - Schwartz inequality in (a) we 
have 

I ≤ (∫ (k1(h, a) − k2(h, a))
2

da
1

0
)

1

2
(∫ (ln[(z(a) − t(a)) +

1

0

1])
2

da)
1/2

    

≤ ‖k1 − k2‖∞. (ln‖z − t‖ + 1) 

= ‖k1 − k2‖∞. (ln (d(z, t) + 1)                                  (56) 
In similar way, we can find the following estimate for (II): 
II ≤ ‖k1 − k2‖∞. (ln (d(v, u) + 1)                              (57)         
from (55)- (57), we get 

d(R(z, v), R(t, u)) ≤  max(ν, µ)‖k1 − k2‖∞ 

  [(ln(d(z, t) + 1)) + (ln(d(v, u) + 1))] 
≤ max(ν, µ) ‖k1 − k2‖∞ 

[(ln (max (d(z, t), d(v, u), d(R(z, v), z),   
d(R(t, u), t), d(R(v, z), v), d(R(u, t), u)) + 1))  
+ (ln (d(z, t), d(v, u), d(R(z, v), z), d(R(t, u), t),    
d(R(v, z), v), d(R(u, t), u)) + 1))]  
= 2 max(ν, µ) ‖k1

− k2‖∞  ln (max(d(z, t), d(v, u), d(R(z, v), z), d(R(t, u), t),
d(R(v, z), v), d(R(u, t), u) + 1))  

From last inequality and presumption (f) give us  
d(R(z, v), R(t, u))  ≤  (ln(max(d(z, t), d(v, u), d(R(z, v), z),
d(R(t, u), t), d(R(v, z), v), d(R(u, t), u)) + 1))  
or, equivalently, 
d(R(z, v), R(t, u))  ≤  
(max(d(z, t), d(v, u), d(R(z, v), z), d(R(t, u), t), 
d(R(v, z), v), d(R(u, t), u))  
− [(max(d(z, t), d(v, u), d(R(z, v), z), d(R(t, u), t),  
d(R(v, z), v), d(R(u, t), u))  −
 ln(max(d(z, t), d(v, u), d(R(z, v), z), d(R(t, u), t),
d(R(v, z), v), d(R(u, t), u)) + 1))]                                 (58) 

Put ϕ(z)  =  z and φ(z)  =  z −  ln(z + 1). Clearly, φ and 

ϕ are altering distance functions therefore from (58) we 
have 
ϕ(d(R(z, v), R(t, u))  
≤  ϕ(d(max(d(z, t), d(v, u), d(R(z, v), z), d(R(t, u), t),
d(R(v, z), v), d(R(u, t), u)) ─ φ(d(max(d(z, t), d(v, u),
d(R(z, v), z), d(R(t, u), t), d(R(v, z), v), d(R(u, t), u)))) 
This shows that the mapping R satisfies the condition 
occurring in Corollary (9). 
Finally, let γ, δ be the functions occurring in presumption 
(e); then, by (e), we get 

γ ≤  R(γ, δ), δ ≥  R(δ, γ). 
Using Corollary (9), the existence of (z, v)  ∈ W × W we 

deduce such that z =  R(z, v) and v =  R(v, z), that is, 
(z, v) is a solution of equation (52). 
This finishes the proof. 
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