
Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 120

et
International Journal on Emerging Technologies 16(2): 120-139(2025)

ISSN No. (Print): 0975-8364

ISSN No. (Online): 2249-3255

Web Vulnerabilities using Machine Learning for Prevention and Detection: A
Critical Review

Oduleye B.E.*, Asuquo P. and Bliss U.S.

Department of Computer Engineering, University of Uyo, Nigeria.

(Corresponding author: Oduleye B.E.*)
(Received 10 June 2025, Revised 06 August 2025, Accepted 25 August 2025)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Deep learning has emerged as a powerful tool in addressing the complex and evolving nature

of cybersecurity threats, particularly in the realm of web security. This paper explores the challenges and

opportunities associated with integrating deep learning techniques into web security measures. Web

vulnerabilities, ranging from injection attacks to authentication flaws, pose significant risks to digital

systems and necessitate comprehensive cybersecurity strategies. Deep learning offers promising avenues

for enhancing detection accuracy and efficiency by automatically learning from vast datasets. However, the

integration of deep learning into web vulnerability identification encounters challenges such as data

availability, interpretability, and susceptibility to adversarial attacks. Despite these challenges, recent

advances in deep learning have revolutionized web security, enabling the development of state-of-the-art

models like convolutional neural networks (CNNs) and recurrent neural networks (RNNs). These models

exhibit remarkable performance in detecting malware, identifying anomalies, and preventing intrusions,

thus mitigating potential security breaches. Moreover, emerging techniques such as generative adversarial

networks (GANs) and interdisciplinary approaches incorporating natural language processing (NLP) and

graph analysis are shaping the future of web security. However, challenges remain, including data

requirements, computational resources, and vulnerability to adversarial attacks. Addressing these

challenges requires innovative strategies like transfer learning, federated learning, and privacy-preserving

approaches to enhance the generalization capabilities and resilience of deep learning models in web

security applications. By leveraging the strengths of deep learning techniques and traditional methods,

comprehensive web security solutions can be designed to effectively mitigate risks and safeguard against

evolving threats in today's interconnected digital landscape.

Keywords: Adversarial Attacks, Cybersecurity, Deep Learning, Malware Detection, Vulnerability Identification.

INTRODUCTION

Web vulnerabilities relate to defects or flaws in web

applications, websites, or web servers that can be

exploited by hostile actors to undermine the security of

the system or the data it holds (Nirmal et al., 2018;

Naveen & Mishra 2020). These vulnerabilities can

occur at multiple levels of the web architecture,

including the application layer, server layer, and

network layer (Priyanka & Smruthi 2020; Al-Kahla et
al., 2021; Bararia & Choudhary 2023). They pose

considerable hazards to the security, integrity, and

availability of information stored or sent via the web.

One of the most popular types of web vulnerabilities is

the injection attack, when attackers inject malicious

code or commands into input fields or parameters of

web applications to change their behavior or access

sensitive information (Gu et al., 2020). Examples

include SQL injection, cross-site scripting (XSS), and

command injection. Another prominent sort of online

vulnerability is authentication and session management
problems, in the study of (Hassan et al., 2018), they

found 56% to be vulnerable to these flaws. These

vulnerabilities allow attackers to bypass authentication

systems, hijack user sessions, or escalate privileges to

gain unauthorized access to web sites or sensitive data.

Web vulnerabilities can also come from unsafe direct

object references, security misconfigurations, cross-site

request forgery (CSRF), and sensitive data exposure,

among others (Bararia & Choudhary 2023). Each form

of vulnerability has its distinct hazards and potential
influence on the security posture of web systems.

The discovery and treatment of online vulnerabilities

are key components of cybersecurity and web

application development techniques. Failure to address

these vulnerabilities can lead to serious consequences,

including data breaches, financial losses, reputational

damage, and legal penalties. Moreover, in today's

interconnected digital landscape, where web

applications serve as gateways to sensitive information

and critical systems, the impact of web vulnerabilities

extends beyond individual websites to affect entire
organizations and their stakeholders (Anwar et al.,

mailto:B.E.*Bolanle_ayomi@yahoo.com
http://www.researchtrend.net/

Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 121

2018; Mishra et al., 2021) Identifying online

vulnerabilities is crucial for preserving the security and
integrity of web-based systems and protecting sensitive

information from unauthorized access, alteration, or

disclosure.

Proactive vulnerability detection and mitigation

solutions are critical for enterprises to manage security

risks, comply with regulatory requirements, safeguard

user privacy, and preserve business continuity. Web

vulnerabilities expose enterprises to different threats,

such as data breaches, malware infections, and service

disruptions (Tang et al., 2019). By proactively

identifying and addressing these vulnerabilities,

companies can lower the likelihood of successful
cyberattacks and limit the impact on their operations

and stakeholders. Compliance with rules like GDPR,

PCI DSS, and HIPAA often needs robust security

measures (Chhetri et al., 2022). Failure to identify and

address web vulnerabilities can expose user privacy,

erode confidence, and ruin organizations' brand. Web-

based services and applications are key components of

modern company operations, providing e-commerce,

online banking, communication, and collaboration.

Vulnerabilities that interrupt web systems can result in

financial losses, productivity decreases, and consumer
unhappiness. Therefore, identifying and mitigating

vulnerabilities is critical for assuring continued web

service functioning and sustaining business continuity.

Traditional approaches to web vulnerability

identification comprise a variety of strategies and

processes targeted at finding and mitigating

vulnerabilities in web applications and systems. Web-

based risks have changed over time, with traditional

methods such as manual code review, vulnerability

scanning tools, penetration testing, web application

firewalls (WAFs), and secure coding practices

(Asaduzzaman et al., 2020). Manual code review
involves human professionals carefully evaluating

online application source code to discover potential

vulnerabilities, such as injection holes, authentication

problems, and vulnerable configuration settings

(Marashdih et al., 2018). However, it is time-

consuming and resource-intensive, making it unfeasible

for large-scale applications or frequent code

modifications.

Vulnerability scanning solutions automatically scan

online applications and servers for known

vulnerabilities, misconfigurations, and security issues.
They employ predefined signatures and attack patterns

to identify common vulnerabilities, such as SQL

injection, cross-site scripting (XSS), and directory

traversal (Amankwah et al., 2020; Alazmi & De Leon

2022). However, they may produce false positives or

miss developing risks. Penetration testing, often known

as ethical hacking, mimics real-world intrusions to

assess the security posture of web services and systems.

It gives useful insights into the effectiveness of security

controls and helps organizations prioritize remedial

efforts based on the severity of identified

vulnerabilities.
Web application firewalls (WAFs) monitor and filter

HTTP traffic between web applications and clients,

assessing incoming requests and responses for

suspicious patterns, abnormalities, or known attack

signatures (Muzaki et al., 2020). While they offer real-

time security and threat intelligence, they may bring

performance overhead and require regular upgrades.

Secure coding techniques comprise following

established rules, best practices, and coding standards

to design online applications resilient to common

vulnerabilities and security threats (Anis et al., 2018;

Nembhard et al., 2019). Integrating security into the
software development lifecycle (SDLC) helps minimize

vulnerabilities during development and save remedial

costs.

Traditional approaches to web vulnerability

identification comprise a number of techniques,

including manual code inspection, vulnerability

scanning, penetration testing, web application firewalls,

and secure coding practices. While each strategy has its

strengths and limits, organizations can increase their

security posture by adopting a holistic and layered

approach to web application security that integrates
numerous techniques and strategies.

Deep learning, a subset of machine learning, has

emerged as a promising tool for addressing difficult

cybersecurity concerns, including web security. Deep

learning algorithms, inspired by the structure and

function of the human brain, can automatically learn

and extract subtle patterns and features from massive

volumes of data, enabling them to detect and mitigate

web-based risks efficiently (Vinayakumar et al., 2019;

Tian et al., 2020). Deep learning algorithms are used in

web security to detect and categorize malware,

abnormalities, intrusions, and phishing attempts. These
techniques can be used to file signatures, behavior

patterns, and network traffic to discover new threats

with high accuracy. They can also detect aberrant

behavior in web traffic, user sessions, and system logs,

indicating probable security breaches or unauthorized

access attempts (Vinayakumar et al., 2019). These

models can also detect and prevent breaches, exploits,

and cyberattacks affecting web servers, apps, and

databases. They can recognize patterns linked with

known attack vectors and developing threats in real-

time utilizing deep neural networks and convolutional
architectures. Deep learning models can identify

phishing attempts and fraudulent activity by evaluating

email headers, message content, and user interactions.

These algorithms may categorize emails as valid or

suspect based on linguistic signals, contextual

information, and sender reputation.

Deep learning is a significant technique in web security,

giving scalability, adaptability, and accuracy. It can

process massive volumes of data and detect threats

without manual involvement, making it appropriate for

large-scale web environments and dynamic attack

Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 122

landscapes (Tian et al., 2020). It can learn from varied

datasets, detecting fresh threats and zero-day
vulnerabilities with minimal human supervision.

Compared to traditional rule-based or signature-based

techniques, deep learning minimizes false positives and

false negatives. Deep learning in web security confronts

issues such as data quality and quantity, interpretation,

and adversarial assaults (Liu et al., 2021). Large,

diversified, and labeled datasets are essential for

effective learning, which can be challenging to get due

to privacy concerns, data shortages, and class

imbalance. Interpretability is also an issue, as deep

learning models are frequently regarded black-box

systems, making it difficult to understand their
decision-making process and rationale (Ali et al.,

2024). Therefore, robustness and resilience are critical

in deep learning-based web security systems.

Web vulnerabilities refer to flaws in online

applications, websites, or servers that criminal actors

exploit to gain access to digital systems. These flaws

exist at several levels, including the application, server,

and network layers (Gupta & Gupta 2015; Priyanka &

Smruthi 2020). Recognizing the type and severity of

these vulnerabilities is critical for implementing

effective cybersecurity solutions. Web vulnerabilities
include injection attacks, authentication problems,

unsafe direct object references, security setup errors,

and cross-site request forgery (Asati et al., 2024). These

flaws jeopardize data integrity, confidentiality, and

availability, resulting in breaches, malware infections,

service disruptions, reputational harm, and legal

liabilities. Deep learning, a type of machine learning,
has emerged as an effective technique in cybersecurity.

It provides benefits like scalability, adaptability, and

accuracy in identifying and managing various cyber

threats such as malware, anomalies, intrusions, and

phishing attacks (Mahdavifar & Ghorbani 2019). Deep

learning models, such as convolutional neural networks

(CNNs) and recurrent neural networks (RNNs), scan

large datasets for patterns that indicate security threats.

However, issues like data quality, interpretability, and

vulnerability to adversarial attacks impede the wider

use of deep learning in online security. Combining

classical approaches with deep learning techniques can
improve detection performance while resolving

constraints. Feature extraction, anomaly detection,

ensemble learning, transfer learning, and domain

adaptation are examples of deep learning-based

vulnerability identification strategies (Bamane et al.,

2023). These approaches use deep learning's

capabilities to enhance accuracy and efficiency in

discovering web vulnerabilities, thereby improving

overall web security measures.

Web application security architecture encompasses

various layers and components designed to protect web
applications from potential threats and vulnerabilities

(Aborujilah et al., 2022). A well-designed security

architecture ensures the confidentiality, integrity, and

availability of data and services provided by the

application as shown in (Fig. 1).

Fig. 1. Web Security Architecture.

Deep learning shows potential for increasing web

security by providing automated threat identification,

anomaly detection, intrusion detection, and phishing

detection in web-based systems. By using the

capabilities of deep learning, organizations may

increase their defenses against evolving cyber threats
and safeguard their web apps, systems, and users

against exploitation and compromise. The detection of

web vulnerabilities is crucial for maintaining the

security, privacy, and continuity of web-based services.

By adopting proactive security measures, firms can

manage risks, comply with legal obligations, secure

user privacy, and uphold the trust and confidence of

their stakeholders.

WEB VULNERABILITIES

Web vulnerabilities indicate serious weaknesses or

defects inside web apps, websites, or web servers that

bad actors might exploit to jeopardize the security and

integrity of digital systems. These vulnerabilities can

occur at many levels of the web architecture, including
the application layer, server layer, and network layer

(Nirmal et al., 2018; Dwivedi 2021). Understanding the

nature, forms, and impact of web vulnerabilities is vital

for successful cybersecurity measures and the

protection of sensitive information in today's linked

digital landscape.

Web vulnerabilities comprise a wide range of security

issues that expose web applications and systems to

exploitation by attackers. These vulnerabilities might

Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 123

develop due to programming errors, misconfigurations,

design flaws, or insufficient security measures within

web-based technology.

Common examples of web vulnerabilities include:

Injection Attacks: Injection attacks occur when

malicious code or commands are injected into input

fields or parameters of online applications to change

their behavior or obtain unauthorized access to sensitive

data (Bararia & Choudhary 2023). Examples include

SQL injection, where attackers insert harmful SQL

queries into input fields to modify databases, and XSS,
where attackers inject malicious scripts into web pages

seen by other users.

Authentication and Session Management Flaws:
Authentication and session management vulnerabilities

allow attackers to bypass authentication methods,

hijack user sessions, or escalate privileges to obtain

unauthorized access to web sites or sensitive data

(Hassan et al., 2018). Weak password restrictions,

insecure session tokens, and inadequate access controls

are common instances of authentication and session

management issues.
Insecure Direct Object References (IDOR): Insecure

direct object references occur when web applications

disclose internal objects, files, or resources directly to

users without sufficient authorization checks (Pratama

& Rhusuli 2022). Attackers can exploit IDOR

vulnerabilities to obtain sensitive data or perform

unwanted operations by changing object references in

URLs or request parameters.

Security Misconfigurations: Security

misconfigurations arise when web servers, databases, or

application frameworks are poorly configured, leaving

them exposed to exploitation (Liu et al., 2019).
Common misconfigurations include default settings,

open ports, unneeded services, and obsolete software

versions, which can be exploited by attackers to obtain

unauthorized access or jeopardize system integrity.

Cross-Site Request Forgery (CSRF): CSRF attacks

occur when attackers deceive authenticated users into

unintentionally executing harmful activities on web

applications where they have an active session (Kour,

2020). By leveraging the trust relationship between the

user and the online application, attackers can undertake

unauthorized operations, such as moving funds,

modifying account settings, or submitting fraudulent

transactions.

Web vulnerabilities jeopardize data integrity,

confidentiality, and availability, prompting breaches,

malware, interruptions, reputation damage, and legal

concerns (Bararia & Choudhary 2023) Data breaches

can result in illegal access, disclosure, or theft of

sensitive information, leading to financial, legal, and
reputational implications for companies. Malware

infestations can halt corporate operations, ruin data, and

risk the confidentiality of sensitive information. Service

disruptions can originate from denial-of-service attacks,

server breakdowns, and application failures, impacting

the availability and operation of web-based services and

applications. Public exposure of web vulnerabilities or

security breaches can harm the reputation and

credibility of organizations, undermining customer

confidence and investment faith. Legal obligations may

develop for non-compliance with data protection
legislation, industry regulations, or contractual

responsibilities. Regulatory frameworks such as the

General Data Protection Regulation (GDPR), Payment

Card Industry Data Security Standard (PCI DSS), and

Health Insurance Portability and Accountability Act

(HIPAA) impose strict requirements for safeguarding

sensitive data and protecting user privacy in web

environments.

The OWASP Top 10 list typically includes the most

critical security risks to web applications based on

community feedback and data analysis as shown in

Table 1 to table 10.
Injection: Injection attacks occur when untrusted data

is sent to an interpreter as part of a command or query.

Types of injection attacks include SQL injection,

NoSQL injection, OS command injection, and LDAP

injection. Attackers exploit vulnerabilities in input

validation to inject malicious code, leading to data

breaches, data loss, and unauthorized access

Table 1: Injection.

Type Description Impact

SQL Injection Allows attackers to execute arbitrary SQL
Data loss, unauthorized access, data

leakage

NoSQL Injection Similar to SQL injection but targets NoSQL databases
Data loss, unauthorized access, data

leakage

OS Command
Injection

Exploits vulnerabilities in command execution
Remote code execution, system

compromise

LDAP Injection
Attacks LDAP (Lightweight Directory Access Protocol)

queries
Unauthorized access to directories, data

leakage

Broken Authentication: This vulnerability occurs

when authentication and session management

mechanisms are implemented incorrectly. Attackers

exploit weaknesses such as weak passwords, session

fixation, and session hijacking to gain unauthorized

access to user accounts.

Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 124

Table 2: Broken Authentication.

Type Description Impact

Weak Passwords Users choose easily guessable or common passwords Account takeover, unauthorized access

Session Fixation Attackers set session identifiers for victims Session hijacking, unauthorized access

Session Hijacking Attackers steal session cookies or session IDs Account takeover, unauthorized access

Credential Stuffing Attackers use leaked credentials to gain access Account takeover, unauthorized access

Sensitive Data Exposure: This vulnerability involves

the exposure of sensitive data such as passwords, credit

card numbers, or personal information due to weak

encryption, insecure storage, or improper transmission.

XML External Entities (XXE): XXE attacks occur

when an attacker can upload or modify XML input

containing external entity references. These entities can

be used to disclose internal files, execute remote code,

or perform denial of service attacks.

Broken Access Control: This vulnerability occurs

when restrictions on what authenticated users are

allowed to do are not properly enforced. Attackers

exploit these weaknesses to gain unauthorized access to

resources or perform actions beyond their privileges.

Security Misconfiguration: This vulnerability occurs

due to insecure configuration settings, default

configurations, or unnecessary features enabled on the

web application, server, or platform.

Table 3: Sensitive Data Exposure.

Type Description Impact

Weak Encryption Data is encrypted using weak algorithms or keys Data theft, unauthorized access

Insecure Storage Data is stored in plaintext or with weak protection Data theft, unauthorized access

Insecure Transmission Data is transmitted over unencrypted channels Data interception, unauthorized access

Improper Access Control Inadequate access controls on sensitive data Unauthorized access, data leakage

Table 4: XXE.

Type Description Impact

Entity Expansion
Attackers expand external entities to read files or execute

commands
Data theft, remote code execution

Entity Injection Insertion of malicious entities into XML data
Data leakage, remote code

execution

Entity
Manipulation

Manipulation of existing entities for malicious purposes Data theft, unauthorized access

Blind XXE Attackers exploit XXE without receiving direct responses Data theft, remote code execution

Table 5: Broken Access Control.

Type Description Impact

Insecure Direct Object
References

Accessing resources directly without proper
authorization

Unauthorized access, data leakage

Missing Function Level Access
Control

Access control checks are missing or not properly
implemented

Unauthorized access, privilege
escalation

Overly Permissive Access

Controls

Permissions are set too broadly, allowing excessive

access
Unauthorized access, data leakage

Insecure Access Control Methods Weaknesses in access control mechanisms Unauthorized access, data leakage

Table 6: Security Misconfiguration.

Type Description Impact

Default Accounts and
Passwords

Use of default credentials or accounts Unauthorized access, data breach

Unnecessary Services Running unnecessary services or components
Attack surface expansion, potential

vulnerabilities

Open Cloud Buckets
Cloud storage buckets are left open or

misconfigured
Data exposure, unauthorized access

Misconfigured Security
Headers

Improperly configured HTTP headers Cross-site scripting, data leakage

Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 125

Cross-Site Scripting (XSS): XSS vulnerabilities occur

when attackers inject malicious scripts into web pages

viewed by other users. These scripts can steal sensitive

data, hijack sessions, or deface websites.

Insecure Deserialization: This vulnerability occurs

when untrusted data is deserialized by a program,

leading to remote code execution or other malicious

actions.

Using Components with Known Vulnerabilities: This

vulnerability arises when outdated or vulnerable

components, libraries, or frameworks are used in a web

application.

Insufficient Logging & Monitoring: This

vulnerability occurs when an application lacks proper

logging and monitoring mechanisms, making it difficult

to detect and respond to security incidents.

Table 7: XSS.

Type Description Impact

Reflected XSS Injected script reflects off a web application Data theft, session hijacking

Stored XSS Injected script is stored on the server and executed when accessed Data theft, session hijacking

DOM-based XSS Client-side vulnerabilities in JavaScript code Data theft, session hijacking

Blind XSS Attacker cannot directly observe the effects of the payload Data theft, session hijacking

Table 8: Insecure Deserialization.

Type Description Impact

Remote Code Execution Allows attackers to execute arbitrary code System compromise, unauthorized access

Data Tampering Modifies serialized data to alter application behavior Data corruption, system compromise

Denial of Service Exploits deserialization vulnerabilities to disrupt services Service interruption, system compromise

Session Hijacking Manipulates serialized data to hijack sessions Unauthorized access, session hijacking

Table 9: Using Components with Known Vulnerabilities.

Type Description Impact

Outdated Libraries
Use of older versions of libraries with known

vulnerabilities
Exploitation of known vulnerabilities, system

compromise

Unpatched Software
Failure to apply security patches and updates to

components
Exploitation of known vulnerabilities, system

compromise

Vulnerable
Dependencies

Dependencies with known security flaws
Exploitation of known vulnerabilities, system

compromise

Third-party APIs Integration with insecure or untrustworthy APIs Data leakage, unauthorized access

Table 10: Insufficient Logging & Monitoring.

Type Description Impact

Lack of Monitoring
Failure to monitor system activities and security

events
Missed security incidents, delayed response

Inadequate Logging Insufficient logging of events and actions
Difficulty in detecting and investigating security

breaches

No Alerts or
Notifications

Absence of alerts or notifications for suspicious
activities

Delayed response to security incidents

Limited Retention
Short retention periods for logs and monitoring

data
Difficulty in forensic analysis, incident response

These tables provide a comprehensive overview of each
vulnerability type, including their classifications,

descriptions, and impacts. Developers and security

professionals need to understand these vulnerabilities

and implement appropriate measures to mitigate the

associated risks in web applications.

The OWASP Top 10 list for 2021 incorporates various

adjustments and new categories to better represent

current trends and difficulties in online application

security, as described in (Fig. 2) (OWASP Top Ten |

OWASP Foundation, n.d.).

A01:2021-Broken Access Control: This category has

risen up from the fifth place, demonstrating its growing
occurrence in web application security vulnerabilities.

Broken access control refers to inadequate limits on

what authorized users may perform within an

application. With 94% of apps assessed for some type
of failed access restriction, its ubiquitous presence is

obvious.

A02:2021-Cryptographic Failures: Previously known as

Sensitive Data disclosure, this category now focuses on

errors linked to cryptography, which often lead to

sensitive data disclosure or system penetration. By

tackling the core causes rather than merely the

symptoms, this category tries to promote cryptographic

practices in online applications.

A03:2021-Injection: Injection vulnerabilities have

dropped down to the third place but remain a serious

risk. Ninety-four percent of apps were checked for
some sort of injection, underlining the necessity to limit

injection risks, which can lead to numerous assaults

such as SQL injection and command injection.

Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 126

A04:2021-Insecure Design: This new category

emphasizes dangers connected to design errors in

online applications. By advocating approaches like as

threat modeling, safe design patterns, and reference

architectures, it seeks to address vulnerabilities at the

design stage, eventually enhancing overall security

posture.

A05:2021-Security Misconfiguration: This category has

moved up from #6 in the previous edition, showing the

increased significance of resolving misconfigurations in

highly changeable software. It now includes the old
category for XML External Entities (XXE),

highlighting the need to resolve misconfigurations that

might lead to security breaches.

A06:2021-Vulnerable and Outdated Components:

Previously named Using Components with Known

Vulnerabilities, this category stresses the complexity of

testing and analyzing risks associated to vulnerable and

obsolete components. By stressing the necessity of

addressing these components, it tries to prevent severe

security dangers to online applications.

A07:2021-Identification and Authentication Failures:
Formerly known as Broken Authentication, this

category now contains CWEs more linked to identity

issues. This reflects changes in standardized

frameworks and authentication methods, underlining

the significance of effective identity and authentication

systems.

A08:2021-Software and Data Integrity Failures:

Another new category concentrating on making

assumptions related to software updates, critical data,

and CI/CD pipelines without validating integrity. This

underlines the necessity of preserving the integrity of

software and data throughout the development and

deployment process to prevent possible security

concerns.

A09:2021-Security Logging and Monitoring Failures:

Previously Insufficient Logging & Monitoring, this

category is broadened to encompass more sorts of
failures. It emphasizes the problems in testing for and

fixing faults in logging and monitoring, which can

directly affect incident response and forensics.

A10:2021-Server-Side Request Forgery: Added from

the Top 10 community survey, this category reflects

circumstances where security community members

underline its relevance. Despite not being prominently

displayed in the data, it illustrates the possibility of

attackers using server-side request forgery

vulnerabilities to undertake illegal operations on behalf

of the server.
These updates and additions in the OWASP Top 10 list

reflect the dynamic environment of web application

security threats and underline the significance of

addressing vulnerabilities at various phases of the

software development lifecycle.

Fig. 2. OWASP Top 10 list for 2021 (OWASP Top Ten | OWASP Foundation, n.d.).

Web vulnerabilities have impacted several prominent

firms, resulting in substantial implications such as data

leaks, financial losses, and brand harm. Below is a

concise overview of several noteworthy occurrences:

In 2017, Equifax, a major credit reporting agency,

suffered a significant data leak as a result of a

vulnerability in the Apache Struts framework.

Malicious individuals used this vulnerability to illicitly

obtain access to highly confidential personal data of

more than 147 million individuals, encompassing their

names, Social Security numbers, birth dates, and
residences. The breach resulted in a broad public outcry

and legal consequences, such as several lawsuits,

inquiries conducted by regulatory bodies, and a

substantial erosion of customer confidence (Fruhlinger,

2023). Equifax incurred financial losses due to

expenses related to litigation bills, settlements, and the

negative impact on the company image.

Yahoo experienced many data breaches from 2013 to

2016, impacting billions of user accounts. These hacks

encompassed a range of vulnerabilities, such as SQL

injection and counterfeit cookies. Unauthorized

individuals successfully obtained users' data, including

their names, email addresses, phone numbers, and

passwords that were encoded for security purposes. The

security failures inflicted significant harm on Yahoo's

brand and eroded its standing as a trustworthy provider

of safe services. Yahoo suffered legal ramifications,

including regulatory probes and class-action lawsuits

(Takeaways From Yahoo’s 500-Million-Account

Breach, n.d.). The episodes also had ramifications for

Yahoo's acquisition by Verizon, resulting in a

decreased acquisition price.
In 2013, Target had a data breach stemming from

malware planted on their payment card system. The

virus exploited flaws in Target's network architecture,

allowing attackers to steal credit card data and personal

information from millions of consumers. The breach

harmed Target's brand and reduced consumer trust,

resulting to a fall in sales and stock prices (Jones,

2022). Target sustained enormous financial losses

owing to lawsuit settlements, regulatory fines, and

expenditures connected with cybersecurity upgrades

and consumer remediation initiatives.

Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 127

Marriott International experienced a significant data

breach in 2018, impacting around 500 million guests.

The attack came from weaknesses in Marriott's

Starwood guest reservation database, which had been

exposed since 2014. Attackers got illegal access to

guests' personal information, including names, contact

details, passport numbers, and credit card data. The

breach has severe ramifications for Marriott, including

regulatory inquiries, litigation, and brand harm

(Fruhlinger, 2020). Marriott suffered large expenditures

connected to legal settlements, cybersecurity
enhancements, and compensation for affected

consumers.

In 2014, Sony Pictures Entertainment faced a high-

profile hack ascribed to a group known as the

Guardians of Peace (GOP). The hack exploited

vulnerabilities in Sony's network architecture and

exposed critical company data, including internal

emails, personnel information, and unreleased films.

The hack caused severe interruption to Sony's business,

resulting to disclosed private information, reputational

harm, and financial losses (Young, 2021). Sony
experienced criticism from stakeholders, regulatory

scrutiny, and legal challenges, including lawsuits

brought by workers and shareholders.

These instances underscore the significance of

comprehensive cybersecurity measures and proactive

risk management to guard against online vulnerabilities

and limit the possible effect on enterprises.

CUTTING-EDGE STRATEGIES FOR

ADDRESSING WEB APPLICATION

VULNERABILITIES: STATE-OF-THE-ART

APPROACHES

Addressing each vulnerability in web applications
requires a multifaceted approach that combines

technical solutions, best practices, and ongoing

vigilance.

Broken Access Control vulnerabilities offer a danger to

the security of online applications, allowing

unauthorized users to gain access to sensitive resources

or do actions outside their rights. To overcome this

issue, state-of-the-art techniques rely on developing

comprehensive access control systems. One alternative

is to implement Role-Based Access Control (RBAC) or

Attribute-Based Access Control (ABAC) systems.
RBAC gives responsibilities to users, and access

permissions are issued based on these roles, simplifying

administration and guaranteeing that users only have

access to the resources essential for their jobs. ABAC,

on the other hand, permits access based on qualities

linked with users, resources, and environmental factors,

giving more flexible and fine-grained control over

access rights (Bansal, 2023). Access Control Lists

(ACLs) can be deployed to set access rights for

particular resources. ACLs let administrators to

designate which users or groups have read, write, or

execute rights for specified resources, boosting access

control granularity. Proper session management is also

vital in reducing Broken Access Control issues (Rana &

Mishra 2021). This includes incorporating methods

such as session expiration, ensuring that sessions

automatically end after a specified time of inactivity to

avoid unwanted access. Session invalidation at logout is

critical to withdraw access permissions promptly when

a user logs out, lowering the possibility of session

hijacking. Secure session storage is equally critical to

safeguard session data from unwanted access or

alteration, employing techniques such as encryption and
secure cookie characteristics. By adopting these state-

of-the-art measures, companies may successfully

minimize Broken Access Control vulnerabilities in their

online applications, ensuring that access to resources is

correctly restricted and unauthorized access attempts

are blocked. However, it's vital to regularly monitor and

update access control measures to respond to emerging

security risks and guarantee comprehensive protection

against illegal access.

Adopting strong cryptographic methods and key lengths

required by industry standards increases the security of
data encryption. Algorithms such as AES (Advanced

Encryption Standard) with proper key lengths provide

comprehensive security against cryptographic assaults

(Althamir et al., 2023). Implementing safe key

management procedures is vital to avoid unwanted

access to encryption keys. This entails integrating key

rotation methods to routinely swap encryption keys and

defend against key leakage using secure storage and

transmission protocols (Abu-Faraj et al., 2022).

Leveraging hardware security modules (HSMs) or key

management services (KMS) supplied by cloud

providers can further increase key security. Using
cryptographic libraries and frameworks given by

credible sources is crucial for safe encryption and

decryption procedures. These libraries frequently

undergo extensive security assessments and upgrades to

address emerging threats and vulnerabilities. By

adopting well-established cryptographic libraries such

as OpenSSL or Bouncy Castle, developers may limit

the risk of implementation errors and assure compliance

with industry best practices. Additionally, incorporating

features like digital signatures and message

authentication codes (MACs) utilizing cryptographic
primitives promotes data integrity and authenticity

(Abu-Faraj et al., 2022).

Injection vulnerabilities in online applications needs

extensive safeguards to prevent attackers from

exploiting vulnerabilities such as SQL injection and

cross-site scripting (XSS). Implementing parameterized

queries or prepared statements is a fundamental strategy

to prevent SQL injection attacks. These strategies

ensure that user-supplied input is processed as data

rather than executable code, considerably lowering the

danger of injection vulnerabilities (Abdullayev &

Chauhan 2023). By isolating SQL instructions from
user input, parameterized queries prevent attackers

Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 128

from manipulating SQL queries to execute harmful

commands. Implementing input validation and output

encoding is crucial to combat many sorts of injection

threats, including XSS. Input validation analyzes user

input against specified rules to verify it fulfills

anticipated criteria, hence avoiding fraudulent input

from being handled. Output encoding, on the other

hand, entails encoding user-generated material before

displaying it on web pages, preventing dangerous

scripts from being performed in the context of the

application (Abdullayev & Chauhan 2023). Employing
Object-Relational Mapping (ORM) frameworks and

query builders can assist eliminate injection

vulnerabilities by automatically cleaning inputs and

providing safe database queries. These frameworks

encapsulate database interactions and manage

parameterization internally, lowering the danger of

injection attacks. By adopting ORM frameworks like as

Hibernate in Java or Sequelize in Node.js, developers

may decrease the possibility of creating injection

vulnerabilities in their code.

Performing threat modeling exercises is critical for
methodically detecting potential design defects and

security vulnerabilities. By examining the application's

design, data flow, and possible risks, developers may

predict and prioritize security protections. Threat

modeling helps ensuring that security considerations are

included into the design phase, allowing for more

effective risk reduction. Applying secure design

concepts such as the principle of least privilege and

defense-in-depth is critical for minimizing design-

related vulnerabilities (Purba et al., 2023). The notion

of least privilege argues for providing users just the

minimum rights necessary to complete their duties,
decreasing the attack surface and limiting the

consequences of possible breaches. Defense-in-depth

includes building numerous levels of security measures

to offer redundancy and resistance against attackers.

Employing safe design patterns and reference designs

offers developers with proven solutions to typical

security concerns. Secure design patterns incorporate

best practices for implementing certain security

elements, such as authentication and access control,

whereas reference architectures give blueprints for

constructing secure and scalable applications (Patil &
Thokal 2025). By accessing these tools, developers may

guarantee that their apps comply to recognized security

standards and avoid frequent mistakes.

Establishing automated tools for configuration

management is crucial to enforce consistent and secure

configurations across diverse environments, such as

development, testing, and production. Tools like

Ansible, Puppet, or Chef automate the deployment and

configuration of infrastructure components, ensuring

that security settings are implemented consistently and

lowering the possibility of misconfigurations. Frequent

audits and reviews of setups are critical for discovering
and remedying any risks. Organizations should

undertake frequent audits to check the security posture

of their systems, including examining default settings,

disabling superfluous services, and ensuring

compliance with security policies and standards.

Automated scanning solutions can assist discover

misconfigurations and provide ongoing monitoring of

security settings. Following security best practices and

standards published by platform manufacturers and

security groups is vital for securing settings efficiently

(Shakirov & Karmanov 2020). Platform manufacturers

typically offer security rules and advice for setting their
systems securely. Organizations should be updated

about the latest security warnings and updates and

implement patches swiftly to address identified

vulnerabilities.

Software composition analysis (SCA) techniques is

critical for discovering and tracking risky dependencies

in third-party libraries and components. These tools

assess the dependencies of a web application and give

insights on potential security vulnerabilities existing in

the software stack. By incorporating SCA tools into the

development and deployment pipelines, businesses may
detect susceptible components early in the lifecycle and

take relevant repair measures (Zhao et al., 2023).

Building a comprehensive patch management

procedure is crucial for swiftly implementing security

updates and fixes for identified vulnerabilities.

Organizations should design methods for analyzing the

severity of vulnerabilities, prioritizing fixes based on

risk, and releasing updates in a timely way. Automated

patch management systems can simplify the process of

discovering, testing, and applying updates, decreasing

the window of exposure to known vulnerabilities.

Monitoring vulnerability databases and security
advisories is critical for remaining updated about

developing threats and vulnerabilities in third-party

components. Organizations should frequently monitor

sources such as the National Vulnerability Database

(NVD), vendor security advisories, and open-source

repositories for information on newly identified

vulnerabilities and accessible patches (Chen et al.,

2020). By keeping proactive and responsive to

developing threats, companies may limit the risk caused

by susceptible and outmoded components.

Multi-factor authentication (MFA) adds an extra layer
of protection to user authentication procedures by

forcing users to give various forms of verification. This

often includes combining something the user knows

(e.g., a password) with something they have (e.g., a

smartphone or hardware token) or something they are

(e.g., biometric data). MFA greatly strengthens security

by minimizing the chance of unwanted access, even if

credentials are stolen. Adopting established

authentication protocols such as OAuth and OpenID

Connect guarantees safe authentication and

authorization operations (ALSaleem & Alshoshan

2021). These protocols provide industry-standard
procedures for authentication, authorization, and safe

Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 129

exchange of user credentials across different systems.

By utilizing OAuth for permission and OpenID

Connect for authentication, developers may design

secure authentication processes and safeguard user

credentials from interception and modification.

Utilizing secure authentication procedures such as

password hashing, salting, and password complexity

restrictions is vital for avoiding authentication-related

risks (Petcu et al., 2023). Password hashing and salting

methods encrypt user passwords before saving them in

the database, making it substantially more complex for
attackers to get plaintext passwords in the case of a data

breach. Enforcing password complexity criteria, such as

minimum length and character variety, further

strengthens security by preventing the use of weak or

readily guessable passwords.

State-of-the-art techniques focus on establishing code

signing and integrity verification mechanisms,

leveraging secure development practices, and creating

secure CI/CD pipelines. Integrating code signing and

integrity verification techniques is vital to secure the

integrity of software updates and critical data
(Thangavel & Varalakshmi 2020). Code signature

includes digitally signing software updates and other

executable files using cryptographic keys, allowing

users to verify the validity and integrity of the code

before installation. Integrity verification technologies,

such as checksums or digital signatures, can be used to

verify the integrity of essential data, guaranteeing that it

has not been tampered with during transit or storage.

Employing safe development approaches is critical for

preventing integrity-related problems. This involves

doing code reviews, performing static code analysis,

and adhering to secure coding rules throughout the
development process. Code reviews help developers to

discover and resolve possible security vulnerabilities

and integrity concerns before they are incorporated into

the codebase, while static code analysis tools can

automatically uncover common coding mistakes and

security weaknesses. Adhering to secure coding

principles guarantees that developers follow best

practices for building secure and resilient code

(Thangavel & Varalakshmi 2020). Creating safe CI/CD

pipelines with built-in security controls is critical for

identifying and preventing tampering with software and
data throughout the deployment process. Secure CI/CD

pipelines automate the process of developing, testing,

and delivering software updates, enabling for quicker

and more reliable release cycles. By incorporating

security measures like as code signing, integrity checks,

and vulnerability scanning into the CI/CD pipeline,

businesses can guarantee that only trusted and validated

code is sent to production environments.

Providing thorough logging methods is critical to

record security-relevant events and actions within the

program. This entails capturing crucial security events,

such as authentication attempts, access control changes,
and unusual activity, to create a thorough audit trail for

security analysis and incident response. By

documenting essential information with suitable

degrees of detail, companies may get insight into

possible security events and identify malicious activity.

Employing centralized logging solutions and SIEM

systems helps firms to collect, correlate, and analyze

data effectively. Centralized logging systems collect

logs from numerous sources, such as web servers,

application frameworks, and network devices, and store

them in a centralized repository for simple access and

analysis (Hristov et al., 2021). SIEM systems provide
additional features for log aggregation, correlation, and

alerting, allowing enterprises to discover security risks

and abnormalities more effectively. Integrating real-

time monitoring and alerting methods is critical for

recognizing and responding to security events swiftly

(Hristov et al., 2021). Real-time monitoring solutions

continually monitor security-relevant events and

activities, alerting security professionals to possible

risks and abnormalities as they occur. By establishing

automated alerting systems based on predetermined

thresholds and criteria, companies may speed incident
response and limit the consequences of security

breaches.

Server-side request forgery (SSRF) vulnerabilities in

web applications involves comprehensive procedures to

check and manage user-supplied information and

restrict access to external resources. State-of-the-art

techniques emphasize on integrating input validation,

stringent server-side restrictions, and steps to prevent

attackers from creating harmful requests. Verifying and

sanitizing user-supplied information is critical to

prevent attackers from creating fraudulent requests and

exploiting SSRF vulnerabilities (Kour, 2020). Input
validation entails evaluating the format, type, and

content of user input to ensure that it complies to

specified requirements. Sanitization techniques delete

or escape potentially harmful characters or sequences

from user input to avoid injection attacks and other

types of malicious input. Providing strong server-side

input validation is crucial to guarantee that requests are

authentic and intended. Server-side input validation

checks the integrity and authenticity of incoming

requests, ensuring that they originate from trustworthy

sources and include accurate data. By imposing tight
validation criteria, companies may limit the danger of

SSRF attacks and prevent attackers from influencing

server-side behavior. Implementing server-side

restrictions such as allowlists and denylists helps

restrict the sorts of requests that the server may make to

external sites. Allowlists describe approved destinations

or resources that the server is permitted to visit,

whereas denylists block access to known harmful or

prohibited destinations. By establishing server-side

controls correctly, companies may limit the attack

surface and prevent SSRF vulnerabilities from being

exploited.

Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 130

By adopting these state-of-the-art approaches,

organizations can effectively mitigate the

vulnerabilities listed in the OWASP Top 10 and

enhance the security posture of their web applications.

Additionally, ongoing education, training, and

collaboration within the security community are

essential to staying informed about emerging threats

and evolving security best practices.

Table 11 provide an overview of the related works in

each stage for each vulnerability category,

encompassing software design and implementation,

software analysis and testing, as well as deployment

and monitoring.

Table 11: Comprehensive Overview of Vulnerability Mitigation Strategies in Software Development

Lifecycle.

Vulnerability

Category

Software Design and

Implementation

Software Analysis and

Testing
Deployment and Monitoring

Broken Access
Control

Implement RBAC or ABAC, Use
ACLs for access permissions, Proper

session management

Security code reviews,
Penetration testing, Static

code analysis

Logging and monitoring of
access control events, Regular

review of access control
configurations

Cryptographic
Failures

Use strong cryptographic algorithms,
Employ secure key management

practices

Cryptographic
vulnerability assessments,

Penetration testing

Logging and monitoring for
cryptographic operations, Regular
audit of cryptographic protocols

Injection
Use parameterized queries, Employ
input validation and output encoding

Code reviews, Dynamic
analysis, Penetration

testing

Logging and monitoring for
injection attempts, Regular
review of application logs

Insecure Design
Conduct threat modeling exercises,

Follow secure design principles

Architectural risk analysis,
Security reviews, Threat

modeling

Logging and monitoring for
design-related security events,
Regular review of architectural

diagrams

Security
Misconfiguration

Implement automation tools for
configuration management,

Regularly audit configurations

Configuration analysis,
Vulnerability scanning,

Configuration audits

Logging and monitoring for
configuration changes, Regular
review of configuration settings

Vulnerable and
Outdated

Components

Utilize SCA tools for dependency
analysis, Establish patch

management process

Dependency analysis,
Software composition
analysis, Vulnerability

scanning

Logging and monitoring for
third-party component usage,
Regular review and update of

third-party dependencies

Identification and
Authentication

Failures

Implement MFA, Utilize
standardized authentication
protocols, Employ secure

authentication mechanisms

Security assessments,
Authentication bypass
testing, Vulnerability

scanning

Logging and monitoring for
authentication events, Regular
review of authentication logs

Software and Data
Integrity Failures

Implement code signing and
integrity verification mechanisms,

Utilize secure development practices

Integrity testing, Static
analysis, Code review

Logging and monitoring for
integrity-related events, Regular

review of integrity logs

Security Logging and
Monitoring Failures

Implement comprehensive logging
mechanisms, Utilize centralized

logging solutions, Implement real-

time monitoring

Logging and monitoring
testing, Penetration testing,

Threat modeling

Logging and monitoring for
security-relevant events, Regular

review of logs

Server-Side Request
Forgery

Validate and sanitize user input,
Implement strict server-side input

validation

Input validation testing,
Fuzz testing, Penetration

testing

Logging and monitoring for
suspicious request patterns,

Regular review of request logs

EXPLORING THE LANDSCAPE: STATE-OF-

THE-ART MACHINE LEARNING TECHNIQUES

IN WEB APPLICATION DEVELOPMENT

 Web applications and machine learning techniques

have become increasingly intertwined, with machine

learning being leveraged to enhance various aspects of

web application development, such as personalization,
recommendation systems, security, and performance

optimization.

Supervised learning stands as a cornerstone in web

application development, employing algorithms like

Support Vector Machines (SVM), Random Forests, and

Gradient Boosting Machines for classification,

regression, and ranking tasks. Recent improvements see

the incorporation of deep learning models such as

Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs) into web applications,

catering to tasks like image classification, natural

language processing, and time-series prediction.

However, issues remain, showing gaps that deserve
attention. The necessity for big labeled datasets remains

a constraint, reducing the scalability and performance

of supervised learning algorithms. Developing model

interpretability poses a substantial issue, especially with

the emergence of complicated deep learning systems

(Gupta et al., 2022). Preventing overfitting, particularly

Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 131

in sophisticated deep learning models, remains an

ongoing challenge, stressing the demand for strong

regularization strategies and architectural alterations to

increase generalization capabilities. Addressing these

shortcomings is crucial to unlock the full potential of

supervised learning in the field of web application

development.

Unsupervised learning stands at the forefront of

innovation in web application development, where

techniques like K-means clustering, hierarchical

clustering, and Principal Component Analysis (PCA)
are harnessed for pivotal tasks such as customer

segmentation, anomaly detection, and data

preprocessing. Recent breakthroughs see a trend

towards deep learning-based unsupervised approaches,

like autoencoders and Generative Adversarial Networks

(GANs), which excel in tasks like data denoising,

dimensionality reduction, and producing synthetic data

for augmentation.

Nevertheless, major issues continue, showing crucial

gaps that demand addressing. The scalability of

algorithms to handle enormous datasets remains a
serious topic, as standard unsupervised learning

approaches may struggle to process vast volumes of

data efficiently. The difficulty of managing high-

dimensional data creates hurdles, demanding the

development of unique algorithms and strategies to

extract relevant insights. Evaluating the quality of

unsupervised representations remains an ongoing

problem, stressing the need for rigorous evaluation

metrics and approaches to measure the performance of

unsupervised learning models appropriately (Li & Sheu

2021).

Reinforcement learning (RL) stands as a cutting-edge
strategy in web application development, with

algorithms like Deep Q-Networks (DQN) and Proximal

Policy Optimization (PPO) leading the push. These RL

approaches are adeptly employed in a range of tasks

such as content suggestion, dynamic pricing strategies,

and game playing within online applications. Recent

research in RL has pushed the boundaries further,

investigating fresh applications such as tailored

information delivery, adaptable user interfaces, and

improving website design to maximize user

engagement. These improvements underline the
adaptability and promise of RL in tackling difficult

issues in web application design and user interaction.

Considerable gaps continue, presenting notable barriers

to the mainstream adoption of RL in real-world web

applications. These include challenges relating to

sample efficiency, wherein RL algorithms may require

significant training data to reach optimal performance.

The exploration-exploitation trade-offs inherent in RL

algorithms provide issues in balancing the investigation

of new tactics with the exploitation of established

effective behaviors (Nian et al., 2020). Safety concerns

arise in deploying RL agents in production contexts,

stressing the necessity for strong procedures to maintain

the dependability and stability of RL-driven systems.

Deep learning stands as a transformational force in web

application development, with approaches such as deep

neural networks, Convolutional Neural Networks

(CNNs), Recurrent Neural Networks (RNNs), and

Transformer models altering the landscape. These state-

of-the-art deep learning algorithms permit web

applications to perform different tasks including picture

recognition, natural language understanding, and

speech synthesis with unparalleled accuracy and
efficiency (Dong et al., 2021). Recent research

initiatives in deep learning have concentrated on

developing the subject further, with a concentration on

advances in model architectures, transfer learning

approaches, and self-supervised learning techniques

customized for web application domains (Dong et al.,

2021). These approaches aim to boost model

performance, stimulate generalization across varied

datasets, and allow more efficient model training and

deployment procedures.

However, some problems exist, throwing shadows on
the mainstream use of deep learning in online

applications. These include the pressing requirement for

model interpretability, where complicated deep learning

models frequently behave as "black boxes," hampering

human ability to comprehend and trust their decision-

making processes (Dong et al., 2021). Additionally,

issues regarding the resilience of deep learning models

to adversarial assaults raise worries about their

trustworthiness in real-world circumstances. Moreover,

the computational expense associated with training and

deploying large-scale deep learning models creates

practical hurdles, especially for resource-constrained
online settings.

Online learning approaches provide a dynamic

approach to online application development, where

algorithms like Online Gradient Descent and Online

Passive-Aggressive algorithms play a crucial role in

supporting real-time prediction, customization, and

adaptive systems. These state-of-the-art online learning

algorithms are adeptly employed in numerous tasks

such as dynamic pricing, click-through rate prediction,

and user behavior modeling inside online platforms.

Recent research attempts in online learning have
investigated fresh applications and approaches

specialized for web applications (Cesa-Bianchi &

Orabona 2021). Advancements in this subject include

employing online learning techniques for dynamic

pricing strategies, forecasting user engagement metrics

like click-through rates, and modeling user behavior

patterns to boost customization efforts in online

platforms.

However, considerable problems exist, creating large

gaps in the use of online learning approaches in web

applications. These problems include properly

addressing idea drift, where the underlying data
distribution may shift over time, creating hurdles to

Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 132

model flexibility and performance. Additionally,

establishing model stability and minimizing

catastrophic forgetting are significant considerations in

online learning settings, especially when dealing with

high-velocity input streams (Cesa-Bianchi & Orabona

2021). Furthermore, scalability remains a significant

challenge, as online learning algorithms must rapidly

handle and react to massive amounts of data in real-

time.

DEEP LEARNING IN CYBERSECURITY

In recent years, deep learning has emerged as a useful
tool in several sectors, including cybersecurity. With its

ability to automatically learn and extract subtle patterns

and features from massive volumes of data, deep

learning provides considerable potential for boosting

security measures and minimizing cyber risks. Table 12

we provide an overview of deep learning, explore its

applications in cybersecurity, and highlight its

advantages for web security specifically.

Deep learning is a subtype of machine learning that

incorporates artificial neural networks with numerous

layers of interconnected nodes, known as neurons or

units. These networks are inspired by the structure and

function of the human brain, where each layer of

neurons evaluates input data and extracts increasingly
sophisticated information to create predictions or

classifications.

Table 12: Components of Deep Learning.

Component Description

Neural Networks
Fundamental building blocks comprising interconnected layers of neurons—input, hidden, and output—

processing data via mathematical transformations.

Activation
Functions

Functions introducing non-linearity, crucial for learning complex patterns; include sigmoid, tanh, ReLU
(Rectified Linear Unit), and softmax.

Backpropagation
Optimization algorithm adjusting neural network parameters (weights, biases) to minimize the difference

between predicted and actual outputs using gradient descent.

Deep Architectures
Models with multiple layers of neurons enabling hierarchical data representations; examples include CNNs

for images, RNNs for sequences.

Applications of Deep Learning in Cybersecurity.
Deep learning has numerous applications in

cybersecurity, where it is employed to detect and

mitigate various types of cyber threats.

Advantages of Deep Learning for Web Security.
Deep learning offers several advantages for enhancing

web security measures and protecting against cyber

threats.

Table 13: Applications of Deep Learning in Cybersecurity.

Application Description

Malware Detection
Analyzing file signatures, behavior patterns, and network traffic to classify viruses, ransomware, and

trojans. Learns from vast datasets to identify new threats accurately.

Anomaly Detection
Detecting abnormal behavior in network traffic, user sessions, and system logs. Identifies potential

security breaches by learning normal patterns and recognizing deviations.

Intrusion Detection &
Prevention

Analyzing network traffic, packet payloads, and system logs to prevent intrusions and cyberattacks on
web servers and applications. Recognizes known attack vectors and emerging threats in real-time.

Phishing Detection
Analyzing email headers, content, and user interactions to detect phishing attempts. Learns from

historical data to classify emails based on linguistic cues, context, and sender reputation.

Table 14: Advantages of Deep Learning in Web Security.

Advantage Description

Scalability
Deep learning models process vast data volumes and adapt to evolving threats autonomously. Ideal for large-scale

web environments and dynamic attack landscapes. Continuously learning, they update knowledge and enhance
performance.

Adaptability

Deep learning models learn and generalize from diverse datasets, detecting novel threats and zero-day

vulnerabilities with minimal human oversight. Unlike rule-based methods, they identify subtle, unseen patterns
indicating cyber threats effectively.

Accuracy
Achieving high accuracy and precision, deep learning models reduce false positives and negatives compared to

traditional approaches. Leveraging advanced algorithms, they effectively distinguish between legitimate and
malicious activities, enhancing overall security.

DEEP LEARNING FOR ENHANCED WEB

SECURITY: ALGORITHMS AND

APPLICATIONS

As the digital landscape evolves, the danger landscape

evolves with it, needing enhanced security measures to

defend online applications, systems, and users. Deep

learning, a subset of machine learning, has emerged as

Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 133

a strong tool in addressing the complex and dynamic

nature of cyber threats. Numerous deep learning

algorithms specifically specialized for web security,

including malware identification, anomaly detection,

intrusion detection and prevention, and phishing

detection.

Malware, including viruses, ransomware, and trojans,

poses a substantial danger to web security, capable of

compromising sensitive data, interrupting processes,

and incurring financial losses. Deep learning models

offer an effective technique to detect and categorize
malware based on file signatures, behavior patterns, and

network traffic (Vinayakumar et al., 2019).

CNNs and RNNs are extensively used architectures for

malware detection. CNNs are adept in extracting

geographical and temporal properties from raw data,

making them appropriate for analyzing file content and

network packets. RNNs, on the other hand, are well-

suited for processing sequential data, such as system

logs and command sequences.

By training on massive datasets of known malware

samples, deep learning models can learn to differentiate
between benign and dangerous files, enabling proactive

detection and mitigation of malware risks in web

settings.

Anomaly detection is critical for recognizing variations

from regular behavior patterns in web traffic, user

sessions, and system logs, which may indicate potential

security breaches or unauthorized access attempts.

Deep learning algorithms offer robust solutions for

anomaly detection by understanding the regular patterns

and behaviors of online applications and users.

Autoencoders, a form of neural network architecture,

are extensively employed for unsupervised anomaly
detection. Autoencoders learn to rebuild input data by

compressing it into a lower-dimensional representation

and then reconstructing it back to its original form

(Zavrak & Iskefiyeli 2020). Anomalies are recognized

when the reconstruction error exceeds a predetermined

threshold, suggesting deviations from typical behavior.

RNNs and Long Short-Term Memory (LSTM)

networks are also excellent for time-series data

analysis, making them useful for detecting anomalies in

online traffic and system logs (Smagulova & James,

2019). By learning temporal dependencies and
sequential patterns, RNNs and LSTMs can recognize

abnormalities and suspicious activity suggestive of

security concerns.

Intrusion detection and prevention systems (IDPS) are

critical components of web security, tasked with

monitoring and protecting against unauthorized access,

exploits, and cyberattacks against web servers,

applications, and databases (Ahmad et al., 2020). Deep

learning approaches boost the capabilities of IDPS by

providing real-time detection and prevention of

intrusions.

Deep Neural Networks (DNNs) and Deep
Reinforcement Learning (DRL) are useful for intrusion

detection, exploiting large-scale datasets of network

traffic, packet payloads, and system logs to identify

malicious behaviors and attack patterns (Naseer et al.,

2018). DNNs scan network traffic and system records

to detect anomalies and suspicious behavior, while

DRL models learn optimal techniques for responding to

recognized threats and preventing further intrusions.

By continuously learning from fresh data and reacting

to developing threats, deep learning-based intrusion

detection and prevention systems can boost the

resilience of online environments and decrease the risk
of security breaches and data compromises.

Phishing attacks, when hostile actors imitate genuine

entities to trick users into providing personal

information, constitute a substantial danger to web

security and user privacy (Lawson et al., 2020). Deep

learning approaches offer powerful solutions for

identifying and minimizing phishing attempts by

evaluating email headers, message content, and user

interactions.

NLP models, such as RNNs and Transformer-based

architectures like BERT (Bidirectional Encoder
Representations from Transformers), are often

employed for phishing detection (Gualberto et al.,

2020). These algorithms examine linguistic signals,

semantic patterns, and contextual information to discern

between valid and questionable emails.

By training on varied datasets of phishing emails and

legitimate communications, deep learning models can

learn to recognize common phishing strategies,

including faked sender addresses, harmful links, and

false content. By integrating phishing detection

methods into email systems and web browsers,

enterprises may protect users from falling victim to
phishing assaults and safeguard their sensitive

information.

CHALLENGES AND CONSIDERATIONS IN

IMPLEMENTING DEEP LEARNING FOR WEB

SECURITY

Deep learning has emerged as a strong technique in

several sectors, including web security. However,

despite its potential, the implementation of deep

learning in web security brings significant obstacles and

constraints.

One of the key obstacles in employing deep learning for
web security is the availability and quality of data.

Deep learning systems require vast volumes of data to

train efficiently, particularly in web security where

diverse and dynamic threats constantly evolve (Dai &

Boroomand 2021). However, getting labeled data for

training deep learning models in the domain of web

security might be problematic due to various factors.

Obtaining labeled datasets that accurately depict real-

world threats and attack scenarios is tough. Anomalies

and malevolent behaviors are often unusual

phenomena, making it tough to acquire adequate

samples for training. Moreover, classifying data for

Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 134

online security duties involves specialist expertise and

manual work, which can be time-consuming and costly.

The quality of the data used to train deep learning

models strongly effects their performance and

generalization capabilities. In online security, data may

be noisy, incomplete, or biased, which can lead to

suboptimal model performance and higher false

positive or false negative rates (Dai et al., 2017).

Furthermore, the imbalance between normal and

malicious samples in the dataset can impact the model's

capacity to detect rare or emerging threats accurately.
Addressing data quality and quantity challenges in deep

learning for web security needs new approaches such as

data augmentation techniques, active learning

methodologies, and the use of synthetic datasets

generated through simulation or adversarial techniques.

Another difficulty linked with deep learning in online

security is the lack of interpretability of sophisticated

neural network models. Deep learning models,

particularly deep neural networks, are generally

characterized as black boxes, making it tough to grasp

the rationale behind their predictions and judgments,
especially in the context of security-sensitive

applications (Lei et al., 2021).

Interpretability is critical in online security because it

helps security analysts and practitioners to understand

how and why a certain judgment or prediction was

made by the model. Without interpretability, it becomes

difficult to trust and validate the outputs of deep

learning models, leading to problems surrounding

accountability and transparency in security-critical

applications. Several approaches have been proposed to

enhance the interpretability of deep learning models in

web security, including feature visualization
techniques, attribution methodologies, and model-

agnostic interpretability frameworks (Lei et al., 2021).

These techniques aim to provide insights into the

internal workings of deep learning models and help

detect any weaknesses or biases that may impair their

performance and reliability.

Despite these attempts, attaining interpretability

remains an ongoing difficulty in deep learning,

particularly in complicated structures such as deep

neural networks. Balancing model complexity with

interpretability is a trade-off that demands careful
attention in the creation and evaluation of deep

learning-based security solutions.

A key shortcoming of deep learning models in online

security is their sensitivity to adversarial assaults.

Adversarial assaults entail generating input data with

imperceptible perturbations that are explicitly designed

to trick deep learning algorithms, resulting to inaccurate

predictions or behavior. Web security, adversarial

attacks pose major challenges to the integrity and

resilience of deep learning-based security systems (Ren

et al., 2020).

Adversarial attacks can emerge in different forms,
including evasion attacks, poisoning attacks, and model

inversion attacks. Evasion attacks try to avoid detection

methods by changing input data, while poisoning

attacks include manipulating the training data to

threaten the integrity of the model (Ren et al., 2020).

Model inversion attacks leverage flaws in deep learning

models to infer sensitive information about the training

data or the model's parameters.

Mitigating the vulnerability of deep learning models to

adversarial attacks involves a multi-faceted approach

involving robust model design, adversarial training

methodologies, and the integration of security
mechanisms such as input sanitization and anomaly

detection. Additionally, continuing research efforts are

focused on building adversarial robustness metrics and

adversarial training methods to better the resilience of

deep learning models against sophisticated attacks.

RECENT ADVANCES AND TRENDS IN DEEP

LEARNING FOR WEB SECURITY

Deep learning has changed the world of web security

by giving strong tools and approaches to detect and

mitigate numerous threats and vulnerabilities. In recent

years, substantial breakthroughs have been achieved in
exploiting deep learning for web security, ranging from

state-of-the-art models to developing methodologies

and strategies.

State-of-the-Art Deep Learning Models. State-of-the-

art deep learning models have proven amazing

performance in handling different web security

concerns, including malware detection, intrusion

detection, and vulnerability assessment. These models

leverage advanced neural network designs, large-scale

datasets, and complex training procedures to attain

remarkable levels of accuracy and robustness

(Mahdavifar & Ghorbani 2019).
One noteworthy example of a state-of-the-art deep

learning model in web security is the use of CNNs for

virus detection. CNNs excel in learning hierarchical

features from raw input data, making them well-suited

for analyzing complicated malware binaries and

identifying dangerous patterns (Marin et al., 2022).

Researchers including Cui et al. (2019); He & Kim

(2019); Wang et al. (2021) have created CNN-based

malware detection systems that achieve high detection

rates while limiting false positives, hence boosting the

security of web apps and networks.
Another major innovation in deep learning for web

security is the application of RNNs and long short-term

memory (LSTM) networks for intrusion detection.

RNNs and LSTMs are capable of capturing temporal

dependencies in sequential data, making them effective

for detecting aberrant behavior and recognizing

network intrusions in real-time (Li et al., 2021). By

monitoring network traffic and system records, RNN-

based intrusion detection systems may detect suspicious

activity and potential security breaches with high

accuracy and efficiency.

Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 135

Deep learning models such as GANs have been

deployed for creating realistic adversarial examples and

evaluating the robustness of security systems against

complex attacks (Ren & Xu 2019). By simulating

realistic attack scenarios, GAN-based techniques enable

security researchers to analyze the effectiveness of

protection mechanisms and design more resilient

security solutions.

Emerging Techniques and Strategies. In addition to

state-of-the-art models, various developing

methodologies and strategies are influencing the
landscape of deep learning for web security. These

solutions combine novel methodologies and

interdisciplinary insights to confront new and growing

challenges in cyberspace.

One developing trend is the integration of deep learning

with other fields such as NLP and graph analysis for

complete threat detection and analysis. By merging

numerous modalities and data sources, interdisciplinary

approaches enable holistic security monitoring and

threat information gathering, boosting the resilience of

web systems against diverse attack vectors.
Another new strategy is the use of transfer learning and

domain adaptation to increase the generalization

capabilities of deep learning models in web security.

Transfer learning allows models to leverage knowledge

learnt from related tasks or domains, helping them to

adapt to new contexts and datasets with less labeled

data. By pre-training models on large-scale datasets or

auxiliary tasks, transfer learning mitigates the

requirement for significant labeled data and accelerates

the implementation of deep learning solutions in real-

world scenarios.

Emerging technologies such as federated learning and

privacy-preserving approaches are gaining popularity in

web security, particularly in cases requiring sensitive or

confidential data. Federated learning provides

collaborative model training across dispersed devices or

servers without sharing raw data, ensuring user privacy

and confidentiality while boosting model performance

and resilience (Tan et al., 2023). Privacy-preserving

approaches such as differential privacy and

homomorphic encryption ensure that sensitive

information remains secure during data processing and
model inference, safeguarding user privacy in web-

based apps and services (Loya & Bana 2021).

COMPARATIVE ANALYSIS: TRADITIONAL

VS. DEEP LEARNING APPROACHES IN WEB

SECURITY

In the field of online security, both traditional methods

and deep learning techniques play essential roles in

safeguarding against cyber threats. A comparative

review of different approaches reveals distinct strengths

and weaknesses. Traditional approaches rely on rule-

based systems, while deep learning techniques employ
complicated neural networks to find abnormalities and

patterns. Understanding the advantages and challenges

of each strategy is vital for establishing effective web

security measures.

Strengths and Weaknesses of Traditional Methods.

Traditional methods in web security, such as signature-

based detection and rule-based systems, have been the

cornerstone of defense mechanisms for many years.

Table 15: Strengths and weakness of Traditional methods of web security.

Traditional Methods Strengths Weaknesses

Signature-based Detection - Effectively identifies known threats - Limited to known signatures

- Low false positive rates - Ineffective against zero-day attacks

- Fast and efficient deployment - Requires frequent updates and maintenance

Rule-based Systems - Customizable rules for specific environments - Limited scalability to handle complex threats

- Transparency in decision-making - Prone to false positives and false negatives

- Well-understood and widely adopted - Inflexible to adapt to evolving threats

Traditional techniques excel at identifying known
dangers and enforcing established rules but suffer with

adaptation and resistance against developing threats and

sophisticated attack routes. They provide a baseline

degree of protection but may fall short in tackling the

dynamic nature of cyber threats in today's linked world.

Advantages and Challenges of Deep Learning
Techniques. Deep learning techniques, powered by

artificial neural networks, offer a paradigm shift in web

security by enabling automated learning and detection

of complex patterns.

Table 16: Deep learning techniques: Advantages and Challenges.

Deep Learning

Techniques
Advantages Challenges

Neural Network
Architectures

- Capable of learning intricate patterns and
features

- Requires large amounts of labeled training
data

- Adaptable to diverse and evolving threat

landscapes
- Computationally intensive and resource-

demanding

- Potential for continuous improvement through - Lack of interpretability and explainability

feedback loops and model refinement - Vulnerability to adversarial attacks

- Generalizes well to unseen data - Ethical and privacy concerns

Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 136

Deep learning approaches use the potential of neural

networks to autonomously learn from data and adapt to

changing contexts. They offer the possibility for greater

accuracy and scalability in web security solutions.

However, difficulties such as data requirements,

processing resources, interpretability, and adversarial

weaknesses offer substantial impediments to their

widespread adoption and application.

The comparative research illustrates the various

characteristics and trade-offs between standard methods

and deep learning techniques in web security.
Traditional solutions provide reliability and

transparency but may struggle to keep pace with the

dynamic nature of cyber threats. Deep learning

techniques provide the promise of automation and

adaptability but come with inherent limitations related

to data, computation, and interpretability.

The future of web security lies in utilizing the

complimentary qualities of both classical methods and

deep learning techniques. Integrating rule-based

systems with deep learning models can boost detection

capabilities while maintaining transparency and
interpretability. Moreover, continual research and

innovation are needed to solve the obstacles associated

with deep learning, including data scarcity,

computational efficiency, and adversarial robustness.

By using the strengths of traditional methods and the

capabilities of deep learning techniques, companies

may design comprehensive web security plans that

effectively reduce risks and safeguard against

developing threats in an increasingly interconnected

digital ecosystem.

STRATEGIES FOR DEEP LEARNING

INTEGRATION IN WEB VULNERABILITY

IDENTIFICATION

Integrating deep learning models into web vulnerability

identification comprises many important tactics

targeted at exploiting the capabilities of neural

networks to boost detection accuracy and efficiency.

Here are some techniques for efficiently integrating

deep learning into the vulnerability detection process:

a. Feature Extraction and Representation: Deep learning

models excel at learning hierarchical representations of

data, making them well-suited for extracting features

from raw web traffic logs, server logs, and application
data. By preprocessing and translating raw data into

high-dimensional feature vectors, deep learning models

can capture subtle patterns and anomalies suggestive of

possible vulnerabilities.

b. Anomaly identification and Pattern Recognition:

Deep learning techniques, such as autoencoders and

RNNs, can be applied for anomaly identification and

pattern recognition in web traffic and system logs.

These models understand the regular behavior of online

apps and infrastructure and highlight deviations or

unexpected patterns that may signal security

vulnerabilities or malicious activity.

c. Ensemble Learning and Model Fusion: Ensemble

learning techniques, such as mixing multiple deep

learning models or integrating deep learning with

classical machine learning algorithms, can boost the

robustness and generalization capabilities of

vulnerability identification systems. By employing

multiple models and pooling their predictions,

ensemble techniques decrease the chance of false

positives and increase overall detection performance.

d. Transfer Learning and Domain Adaptation: Transfer

learning approaches enable the transfer of knowledge
from pre-trained deep learning models to new

vulnerability identification tasks or domains with

insufficient labeled data. By fine-tuning pre-trained

models on domain-specific datasets or adapting them to

target contexts, transfer learning speeds the deployment

of deep learning solutions in real-world scenarios and

boosts their effectiveness in detecting web

vulnerabilities.

CONCLUSIONS

Web vulnerabilities represent critical weaknesses

within digital systems that adversaries can exploit to
compromise security and integrity. These

vulnerabilities, occurring at various levels of web

architecture, demand a comprehensive understanding of

effective cybersecurity measures. Common examples

include injection attacks, authentication flaws, insecure

direct object references, security misconfigurations, and

cross-site request forgery. These vulnerabilities can

lead to breaches, malware infections, service

disruptions, and reputational damage, highlighting the

urgent need for robust security strategies.

Deep learning has emerged as a promising approach in

cybersecurity, offering significant potential to enhance
detection accuracy and efficiency. By automatically

learning from vast datasets, deep learning models can

effectively identify malware, detect anomalies, prevent

intrusions, and detect phishing attempts. Moreover,

deep learning exhibits scalability, adaptability, and

accuracy, making it suitable for large-scale web

environments and dynamic threat landscapes. However,

integrating deep learning into web vulnerability

identification poses challenges, including data

availability and quality, interpretability, and

susceptibility to adversarial attacks. Addressing these
challenges requires innovative approaches such as data

augmentation, interpretability techniques, and

adversarial robustness measures.

As the digital landscape evolves, so do the associated

dangers, necessitating enhanced security measures to

safeguard online applications, systems, and users. Deep

learning, a subset of machine learning, has emerged as

a potent tool for addressing the intricate and evolving

nature of cyber threats, particularly in web security.

This review has explored numerous deep learning

algorithms specialized for various aspects of web

security, including malware identification, anomaly

Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 137

detection, intrusion detection and prevention, and

phishing detection. Malware, a significant threat to web

security, can lead to severe consequences such as data

compromise and financial losses. Deep learning

models, particularly CNNs and RNNs, have proven

effective in detecting and categorizing malware based

on diverse data sources. Moreover, deep learning excels

at anomaly detection, identifying deviations from

normal patterns in web traffic and system logs

indicative of potential security breaches. Despite its

potential, implementing deep learning in web security
presents challenges, including data availability and

quality, interpretability, and vulnerability to adversarial

attacks. Addressing these challenges requires

innovative approaches such as data augmentation,

interpretability techniques, and adversarial robustness

measures.

Recent advances in deep learning have revolutionized

web security by providing powerful tools and

methodologies to detect and mitigate various threats

and vulnerabilities. State-of-the-art deep learning

models, such as CNNs for malware detection and
RNNs for intrusion detection, have demonstrated

remarkable performance in addressing critical security

concerns. Additionally, emerging techniques like GANs

and interdisciplinary approaches incorporating NLP and

graph analysis are shaping the future of web security by

enabling comprehensive threat detection and analysis.

While deep learning offers significant advantages in

terms of automation, adaptability, and scalability, it also

presents challenges such as data requirements,

computational resources, interpretability, and

vulnerability to adversarial attacks. Addressing these

challenges requires innovative strategies like transfer
learning, federated learning, and privacy-preserving

approaches to enhance the generalization capabilities

and resilience of deep learning models in web security

applications.

Ultimately, the integration of deep learning techniques

with traditional methods holds promise for designing

comprehensive web security solutions that effectively

reduce risks and safeguard against evolving threats in

today's interconnected digital landscape. Continued

research and innovation in deep learning for web

security are essential to overcome existing challenges
and ensure the development of robust and reliable

security measures for the future.

Acknowledgement. The authors would like to express their

sincere gratitude to the anonymous reviewers and the editor
for their valuable comments, insightful suggestions, and
constructive feedback, which have significantly improved the
quality of this manuscript.
Conflict of Interest. None.

REFERENCES

Abdullayev, V. & Chauhan, D. A. S. (2023). SQL Injection
Attack: Quick View. Mesopotamian Journal of Cyber
Security, 30–34.

Aborujilah, A., Adamu, J., Shariff, S. M. & Awang Long, Z.
(2022). Descriptive Analysis of Built-in Security
Features in Web Development Frameworks. 2022 16th
International Conference on Ubiquitous Information
Management and Communication (IMCOM).

Abu-Faraj, M., Al-Hyari, A. & Alqadi, Z. (2022). A Complex
Matrix Private Key to Enhance the Security Level of
Image Cryptography. Symmetry, 14(4), 664.

Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J. &

Ahmad, F. (2020). Network intrusion detection
system: A systematic study of machine learning and
deep learning approaches. Transactions on Emerging
Telecommunications Technologies, 32(1).

Alazmi, S. & De Leon, D. C. (2022). A Systematic Literature
Review on the Characteristics and Effectiveness of
Web Application Vulnerability Scanners. IEEE
Access, 10, 33200–33219.

Ali, S., Raslan, A. & Fattouh, L. (2024). Model for the
prediction of default risk of funding requests using
data mining. International Journal on Emerging
Technologies, 15(2), 05–12.

Al-Kahla, W., Shatnawi, A. S. & Taqieddin, E. (2021). A
Taxonomy of Web Security Vulnerabilities. 12th
International Conference on Information and
Communication Systems (ICICS), 424 – 429.

ALSaleem, B. O. & Alshoshan, A. I. (2021). Multi-Factor
Authentication to Systems Login. 2021 National
Computing Colleges Conference (NCCC).

Althamir, M., Alabdulhay, A. & Yasin, M. M. (2023). A
Systematic Literature Review on Symmetric and
Asymmetric Encryption Comparison Key Size. 2023
3rd International Conference on Smart Data
Intelligence (ICSMDI).

Amankwah, R., Chen, J., Kudjo, P. K. & Towey, D. (2020).
An empirical comparison of commercial and
open‐source web vulnerability scanners. Software:
Practice and Experience, 50(9), 1842–1857.

Anis, A., Zulkernine, M., Iqbal, S., Liem, C. & Chambers, C.
(2018). Securing Web Applications with Secure
Coding Practices and Integrity Verification. 2018
IEEE 16th Intl Conf on Dependable, Autonomic and
Secure Computing, 16th Intl Conf on Pervasive

Intelligence and Computing, 4th Intl Conf on Big Data
Intelligence and Computing and Cyber Science and
Technology Congress
(DASC/PiCom/DataCom/CyberSciTech).

Anwar, A., Khormali, A., Nyang, D. & Mohaisen, A. (2018).
Understanding the hidden cost of software
vulnerabilities: measurements and predictions. Lecture
Notes of the Institute for Computer Sciences, Social

Informatics and Telecommunications Engineering,
377–395.

Asaduzzaman, M., Rawshan, P. P., Liya, N. N., Islam, M. N.
& Dutta, N. K. (2020). A Vulnerability Detection
Framework for CMS Using Port Scanning Technique.
Cyber Security and Computer Science, 128–139.

Asati, S., Gangele, R. K. & Kumar, B. (2024). The Black-
Scholes Model: A comprehensive analysis.

International Journal on Emerging Technologies,
15(2), 13–18.

Bamane, K. D., Patankar, A. J., Gupta, P., Jambi, R. K. &
Rajgure, N. (2023). Enhanced Study of Deep Learning
Algorithms for Web Vulnerability Scanner.
International Journal on Recent and Innovation

Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 138

Trends in Computing and Communication, 11(7s),
610–616.

Bansal, A. (2023). CRABAC: Combined Role-Attribute
Based Access Control Model. Interantional Journal of
Scientific Research in Engineering And Management,
07(09).

Bararia, A. & Choudhary, M. V. (2023). Systematic review of
common web-application vulnerabilities. Interantional
Journal of Scientific Research in Engineering and

Management, 07(01).
Cesa-Bianchi, N., and Orabona, F. (2021). Online Learning

Algorithms. Annual Review of Statistics and Its
Application, 8(1), 165–190.

Chen, Y., Santosa, A. E., Sharma, A. & Lo, D. (2020).
Automated identification of libraries from
vulnerability data. Proceedings of the ACM/IEEE
42nd International Conference on Software

Engineering: Software Engineering in Practice.
Chhetri, T. R., Kurteva, A., DeLong, R. J., Hilscher, R.,

Korte, K. & Fensel, A. (2022). Data protection by
design tool for automated gdpr compliance
verification based on semantically modeled informed
consent. Sensors, 22(7): 2763

Cui, Z., Du, L., Wang, P., Cai, X. & Zhang, W. (2019).
Malicious code detection based on CNNs and multi-

objective algorithm. Journal of Parallel and
Distributed Computing, 129, 50–58.

Dai, D. & Boroomand, S. (2021). A Review of Artificial
Intelligence to Enhance the Security of Big Data
Systems: State-of-Art, Methodologies, Applications,
and Challenges. Archives of Computational Methods
in Engineering, 29(2), 1291–1309.

Dai, W., Yoshigoe, K. & Parsley, W. (2017). Improving Data

Quality Through Deep Learning and Statistical
Models. Advances in Intelligent Systems and
Computing, 515–522.

Dong, S., Wang, P. & Abbas, K. (2021). A survey on deep
learning and its applications. Computer Science
Review, 40, 100379.

 Dwivedi, A. (2021). Vulnerability Scanning Technology on
Web Applications. International Journal for Research
in Applied Science and Engineering Technology, 9(6),

991–995.
Fruhlinger, J. (2020). Marriott data breach FAQ: How did it

happen and what was the impact? CSO Online.
https://www.csoonline.com/article/567795/marriott-
data-breach-faq-how-did-it-happen-and-what-was-the-
impact.html

Fruhlinger, J. (2023). Equifax data breach FAQ: What
happened, who was affected, what was the impact?

CSO Online.
https://www.csoonline.com/article/567833/equifax-
data-breach-faq-what-happened-who-was-affected-
what-was-the-impact.html

Gu, H., Zhang, J., Liu, T., Hu, M., Zhou, J., Wei, T. & Chen,
M. (2020). DIAVA: A traffic-based framework for
detection of sql injection attacks and vulnerability
analysis of leaked data. IEEE Transactions on

Reliability, 69(1), 188–202
Gualberto, E. S., De Sousa, R. T., De Brito Vieira, T. P., Da

Costa, J. P. C. L. & Duque, C. G. (2020). The Answer
is in the Text: Multi-Stage Methods for Phishing
Detection Based on Feature Engineering. IEEE
Access, 8, 223529–223547.

Gupta, S., and Gupta, B. B. (2015). Cross-Site Scripting
(XSS) attacks and defense mechanisms: classification
and state-of-the-art. International Journal of System
Assurance Engineering and Management, 8(S1), 512–
530.

Gupta, V., Mishra, V. K., Singhal, P. & Kumar, A. (2022). An
Overview of Supervised Machine Learning Algorithm.
2022 11th International Conference on System
Modeling & Advancement in Research Trends

(SMART).
Hassan, M. M., Nipa, S. S., Akter, M., Haque, R., Deepa, F.

N., Rahman, M. M., Siddiqui, M. & Sharif, M. H.
(2018). broken authentication and session
management vulnerability: a case study of web
application. International Journal of Simulation:
Systems, Science and Technology, 19(01).

He, K. & Kim, D. S. (2019). Malware Detection with

Malware Images using Deep Learning Techniques.
2019 18th IEEE International Conference on Trust,
Security and Privacy in Computing and
Communications/13th IEEE International Conference
on Big Data Science and Engineering
(TrustCom/BigDataSE).

Hristov, M., Nenova, M., Iliev, G. & Avresky, D. (2021).
Integration of Splunk Enterprise SIEM for DDoS

Attack Detection in IoT. 2021 IEEE 20th International
Symposium on Network Computing and Applications
(NCA).

Jones, C. (2022). Warnings (& Lessons) of the 2013
Target Data Breach. Red River | Technology
Decisions Aren’t Black and White. Think Red.
https://redriver.com/security/target-data-breach

Kour, P. (2020). A Study on Cross-Site Request Forgery

Attack and Its Prevention Measures. International
Journal of Advanced Networking and Applications,
12(02), 4561–4566.

Lawson, P., Pearson, C. J., Crowson, A. & Mayhorn, C. B.
(2020). Email phishing and signal detection: How
persuasion principles and personality influence
response patterns and accuracy. Applied Ergonomics,
86, 103084.

Lei, X., Fan, Y., Li, K. C., Castiglione, A. & Hu, Q. (2021).

High-precision linearized interpretation for fully
connected neural network. Applied Soft Computing,
109, 107572.

Li, C., Wang, Y., Miao, C. & Huang, C. (2020). Cross-Site
Scripting Guardian: A Static XSS Detector Based on
Data Stream Input-Output Association Mining.
Applied Sciences, 10(14), 4740.

 Li, H., and Sheu, P. C. Y. (2021). A scalable association rule

learning heuristic for large datasets. Journal of Big
Data, 8(1).

Liu, M., Zhang, B., Chen, W. & Zhang, X. (2019). A Survey
of Exploitation and Detection Methods of XSS
Vulnerabilities. IEEE Access, 7, 182004–182016.

Loya, J. & Bana, T. (2021). Privacy-Preserving Keystroke
Analysis using Fully Homomorphic Encryption &
Differential Privacy. 2021 International Conference

on Cyberworlds (CW).
Mahdavifar, S. & Ghorbani, A. A. (2019). Application of

deep learning to cybersecurity: A survey.
Neurocomputing, 347, 149–176.

Marashdih, A. W., Zaaba, Z. F. & Suwais, K. (2018). Cross
Site Scripting: Investigations in PHP Web

Oduleye et al., International Journal on Emerging Technologies 16(2): 120-139(2025) 139

Application. 2018 International Conference on
Promising Electronic Technologies (ICPET).

Marin, D., Orozco-Rosas, U. & Picos, K. (2022). Malware
classification through image processing with a
convolutional neural network. Optics and Photonics
for Information Processing XVI.

Mishra, S., Alowaidi, M. A. & Sharma, S. K. (2021). Impact
of security standards and policies on the credibility of
e-government. Journal of Ambient Intelligence and

Humanized Computing, 1-12.
Muzaki, R. A., Briliyant, O. C., Hasditama, M. A. & Ritchi,

H. (2020). Improving Security of Web-Based
Application Using ModSecurity and Reverse Proxy in
Web Application Firewall. 2020 International
Workshop on Big Data and Information Security
(IWBIS).

Naseer, S., Saleem, Y., Khalid, S., Bashir, M. K., Han, J.,

Iqbal, M. M. & Han, K. (2018). Enhanced Network
Anomaly Detection Based on Deep Neural Networks.
IEEE Access, 6, 48231–48246.

Naveen, M. & Mishra, D. P. (2020). Addressing web
application security issues and vulnerabilities
assessment pen testing. International Journal of
Recent Technology and Engineering (IJRTE), 8(6):
2314–2321

Nembhard, F. D., Carvalho, M. M. & Eskridge, T. C. (2019).
Towards the application of recommender systems to
secure coding. EURASIP Journal on Information
Security, 2019(1).

Nian, R., Liu, J., and Huang, B. (2020). A review On
reinforcement learning: Introduction and applications
in industrial process control. Computers & Chemical
Engineering, 139, 106886.

Nirmal, K., Janet, B. & Kumar, R. (2018). Web Application
Vulnerabilities - The Hacker’s Treasure. International
Conference on Inventive Research in Computing
Applications (ICIRCA), 58-62.

Patil, S. S. & Thokal, G. N. (2025). Analysis of predictive
mechanical maintenance using artificial intelligence,
machine learning, and data science. International
Journal on Emerging Technologies, 16(1), 45–53.

 Petcu, A., Pahontu, B., Frunzete, M., and Stoichescu, D. A.

(2023). A Secure and Decentralized Authentication
Mechanism Based on Web 3.0 and Ethereum
Blockchain Technology. Applied Sciences, 13(4),
2231.

 Pratama, I. P. A. E., and Rhusuli, A. M. (2022). Penetration
Testing on Web Application Using Insecure Direct
Object References (IDOR) Method. 2022
International Conference on ICT for Smart Society

(ICISS).
Priyanka, A. K. & Sai Smruthi, S. (2020). Web Application

Vulnerabilities: Exploitation and Prevention.
International Conference on Electrotechnical
Complexes and Systems (ICOECS). 1-5.

 Purba, M. D., Ghosh, A., Radford, B. J. & Chu, B. (2023).
Software Vulnerability Detection using Large
Language Models. 2023 IEEE 34th International

Symposium on Software Reliability Engineering
Workshops (ISSREW).

Rana, S. & Mishra, D. (2021). An authenticated access
control framework for digital right management
system. Multimedia Tools and Applications.

Ren, C. and Xu, Y. (2019). A Fully Data-Driven Method
Based on Generative Adversarial Networks for Power
System Dynamic Security Assessment with Missing
Data. IEEE Transactions on Power Systems, 34(6),

5044–5052.
Ren, K., Zheng, T., Qin, Z. & Liu, X. (2020). Adversarial

Attacks and Defenses in Deep Learning. Engineering,
6(3), 346–360.

Shakirov, M. B. & Karmanov, I. N. (2020). Information
Security Audit of an Optoelectronic Device
Engineering Enterprise. Interexpo GEO-Siberia, 6(2),
146–151.

Smagulova, K. & James, A. P. (2019). A survey on LSTM
memristive neural network architectures and
applications. The European Physical Journal Special
Topics, 228(10), 2313–2324.

Tan, A. Z., Yu, H., Cui, L., and Yang, Q. (2023). Towards
Personalized Federated Learning. IEEE Transactions
on Neural Networks and Learning Systems, 34(12),
9587–9603.

Tang, M., Alazab, M., and Luo, Y. (2019). Big Data for
Cybersecurity: Vulnerability Disclosure Trends and
Dependencies. IEEE Transactions on Big Data, 5(3),
317–329.

Thangavel, M. & Varalakshmi, P. (2020). Enabling Ternary
Hash Tree Based Integrity Verification for Secure
Cloud Data Storage. IEEE Transactions on
Knowledge and Data Engineering, 32(12), 2351–

2362.
Tian, Z., Luo, C., Qiu, J., Du, X. & Guizani, M. (2020). A

Distributed Deep Learning System for Web Attack
Detection on Edge Devices. IEEE Transactions on
Industrial Informatics, 16(3).

Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran,
P., Al-Nemrat, A. & Venkatraman, S. (2019). Deep
Learning Approach for Intelligent Intrusion Detection
System. IEEE Access, 7, 41525–41550.

Wang, S., Wang, J., Song, Y. & Li, S. (2021). Malicious Code
Variant Identification Based on Multiscale Feature
Fusion CNNs. Computational Intelligence and
Neuroscience, 2021, 1–10.

Young, K. (2021). Cyber Case Study: Sony Pictures
Entertainment Hack. CoverLink Insurance - Ohio
Insurance Agency.

 Zavrak, S. & Iskefiyeli, M. (2020). Anomaly-Based Intrusion

Detection from Network Flow Features Using
Variational Autoencoder. IEEE Access, 8, 108346–
108358.

Zhao, L., Chen, S., Xu, Z., Liu, C., Zhang, L., Wu, J., Sun, J.
& Liu, Y. (2023). Software Composition Analysis for
Vulnerability Detection: An Empirical Study on Java
Projects. Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on

the Foundations of Software Engineering.

How to cite this article: Oduleye B.E., Asuquo P. and Bliss U.S. (2025). Web Vulnerabilities using Machine Learning for
Prevention and Detection: A Critical Review. International Journal on Emerging Technologies, 16(2): 120–139.

