N-Strongly Projective Injective and Flat Modules over Upper Triangular Matrix Artin Algebras

Sneha Joshi*, Shubhanka Tiwari** and Dr. M.R. Aloney***

*Associate Professor, Department of Mathematics, Malla Reddy College of Engg for Women, Hyderabad
**Assistant Professor, Department of Mathematics, Nachiketa College, Jabalpur, (Madhya Pradesh), INDIA
***Department of Mathematics, TIT Bhopal, (Madhya Pradesh), INDIA

(Corresponding author: Shubhanka Tiwari)

(Received 11 April, 2016 Accepted 20 May, 2016)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: In this article we determine all the n- Strongly Complete Projective Injective and Flat resolutions and all the n-Strongly Gorenstein Projective, Injective and Flat Modules over upper Triangular Matrix artin algebras.

Key words: Gorenstein Projective, Injective and Flat Modules, Strongly Gorenstein Projective, Injective and Flat Modules, n- Strongly Gorenstein Projective, Injective and Flat Modules, Upper Triangular Matrix artin algebras.

I. INTRODUCTION

Throughout this article R is a commutative ring with unit element, and all R modules are unital. If M is any R-Module, we use pd\(_R\)(M), id\(_R\)(M) and fd\(_R\)(M) to denote the usual projective, injective and flat dimensions of M, resp.

Auslander and Bridger introduced the G dimension for finitely generated modules over Noetherian rings in 1967-69 denoted by G-dim(M) where G-dim(M)\(\leq\)pd(M), G-dim(M)\(\leq\)id(M) and G-dim(M)\(\leq\)fd(M). If G-dim(M)=pd(M)=id(M)=fd(M) then it is finite.

The Gorenstein projective, injective and flat dimension of a module is defined in terms of resolutions by Gorenstein projective, injective and flat modules respectively.

Definition:
1. An R-mod M is said to b G-projective (Short of Gorenstein projective) if there exists an exact sequence of projective modules

\[P = \cdots \rightarrow P_3 \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow P \rightarrow \cdots \]

such that M \cong Im(P_0 \rightarrow P), and such that Hom\(_R\)(- , Q) leaves the sequence P exact whenever Q is a projective module. The exact sequence P is called a complete projective resolution.

2. An R-mod M is said to b G-injective (Short of Gorenstein injective) if there exists an exact sequence of injective modules

\[\cdots \rightarrow I_1 \rightarrow I_0 \rightarrow I \rightarrow I^0 \rightarrow \cdots \]

such that M \cong Im(I_0 \rightarrow I^0), and such that Hom\(_R\)(Q, -) leaves the sequence I exact whenever Q is an injective module. The exact sequence I is called a complete projective resolution.

3. An R-mod M is said to b G-flat (Short of Gorenstein flat) if there exists an exact sequence of flat modules

\[\cdots \rightarrow F_1 \rightarrow F_0 \rightarrow F \rightarrow F^0 \rightarrow \cdots \]

such that M \cong Im(F_0 \rightarrow F), and such that \(- \otimes I \) leaves the sequence F exact whenever I is a injective module. The exact sequence F is called a complete Flat resolution.

II. STRONGLY GORENSTEIN PROJECTIVE, INJECTIVE AND FLAT MODULES

In this section we introduce and study the strongly Gorenstein projective and flat modules which are defined as follows:

Definition: A complete projective resolution of the form

\[P = \cdots \rightarrow P \xrightarrow{f} P \xrightarrow{f} P \xrightarrow{f} P \xrightarrow{f} \cdots \]

is called strongly complete projective resolution and denoted by \((P, f)\).

An R-mod M is called strongly Gorenstein projective if M \cong Ker f for some strongly complete projective resolution \((P, f)\).
A complete injective resolution of the form
\[\cdots \xrightarrow{f} I \xrightarrow{f} I \xrightarrow{f} I \xrightarrow{f} \cdots = I \] is called strongly complete injective resolution and denoted by \((I, f)\).

An R-mod \(M \) is called strongly Gorenstein injective if \(M \cong \text{Ker} f \) for some strongly complete injective resolution \((I, f)\).

A complete flat resolution of the form
\[F = \cdots \xrightarrow{g} F \xrightarrow{g} F \xrightarrow{g} F \xrightarrow{g} \cdots \] is called strongly complete flat resolution and denoted by \((F, g)\).

An R-mod \(M \) is called strongly Gorenstein injective if \(M \cong \text{Ker} f \) for some strongly complete flat resolution \((F, g)\).

III. n-STRONGLY GORENSTEIN PROJECTIVE, INJECTIVE AND FLAT MODULES

Let\(n \) be a positive integer. A module \(M \in \text{R-mod} \) is called \(n \)-strongly Gorenstein projective if there exist an exact sequence
\[0 \rightarrow M \xrightarrow{f_n} P_{n-1} \xrightarrow{f_{n-1}} \cdots \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \rightarrow 0 \] in \(\text{Mod R} \) with \(P_i \) projective for \(0 \leq i \leq n - 1 \) such that \(\text{Hom}_R(-, P) \) leaves the sequence exact whenever \(P \in \text{Mod R} \) is projective.

Let \(n \) be a positive integer. A module \(M \in \text{R-mod} \) is called \(n \)-strongly Gorenstein injective if there exist an exact sequence
\[0 \rightarrow M \xrightarrow{f_n} I_0 \xrightarrow{f_1} \cdots \xrightarrow{f_{n-1}} I_{n-1} \xrightarrow{f_n} I_n \rightarrow 0 \] in \(\text{Mod R} \) with \(I_i \) injective for \(0 \leq i \leq n - 1 \) such that \(\text{Hom}_R(I, -) \) leaves the sequence exact whenever \(I \in \text{Mod R} \) is injective.

Let \(n \) be a positive integer. A module \(M \in \text{R-mod} \) is called \(n \)-strongly Gorenstein flat if there exist an exact sequence
\[0 \rightarrow M \xrightarrow{f_n} F_{n-1} \xrightarrow{f_{n-1}} \cdots \xrightarrow{f_1} F_0 \xrightarrow{f_0} M \rightarrow 0 \] in \(\text{Mod R} \) with \(F_i \) flat for \(0 \leq i \leq n - 1 \) such that \(\text{Hom}_R(- \otimes F) \) leaves the sequence exact whenever \(P \in \text{Mod R} \) is flat.

On the basis of above following facts holds

1. A module is Gorenstein projective (resp. Injective) if and only if it is a direct summand of a \(n \)-strongly Gorenstein projective (resp. Injective) module.
2. For finite finitistic projective dimension every \(n \)-strongly Gorenstein projective module is \(n \)-strongly Gorenstein flat module.

Proposition 1: Every projective (resp. Injective) module is \(n \)-strongly Gorenstein projective (resp. Injective)

Proof: Since every projective module is strongly Gorenstein projective then it is \(n \)-strongly Gorenstein projective (resp. Injective).

\[0 \rightarrow M \xrightarrow{f_n} P_{n-1} \oplus P_{n-1} \xrightarrow{f_{n-1}} \cdots \xrightarrow{f_1} P_0 \oplus P_0 \xrightarrow{f_0} M \rightarrow 0 \]

Where \(M \cong \text{Ker} f \)

Consider a projective module Q applying the functor \(\text{Hom}_R(-, Q) \) to the above module M for P we get the following commutative diagram:

\[\cdots \rightarrow \text{Hom}(M \oplus M, Q) \xrightarrow{\text{Hom}_R(f, Q)} \text{Hom}(M \oplus M, Q) \rightarrow \cdots \]

\[\cdots \rightarrow \text{Hom}(M, Q) \oplus \text{HOM}(M, Q) \rightarrow \text{Hom}(M, Q) \oplus \text{Hom}(M, Q) \rightarrow \cdots \]

The \(n \)-strongly Gorenstein projective (resp. Injective) modules are not necessarily projective (resp. Injective).

Theorem 1: A module is Gorenstein projective (resp. Injective) if and only if it is a direct summand of a \(n \)-strongly Gorenstein projective (resp. Injective) module.

Proof: Let M be a Gorenstein projective. Then there exist a complete projective resolution
\[0 \rightarrow M \xrightarrow{f_n^P} P_{n-1} \xrightarrow{f_{n-1}^P} \cdots \xrightarrow{f_1^P} P_0 \xrightarrow{f_0^P} M \rightarrow 0 \]

Such that \(M \cong \text{Ker} f_0^P \)
Consider the exact sequence
\[0 \to \bigoplus M \to \bigoplus P_{n-1} \xrightarrow{f_{n-1}^P} \ldots \xrightarrow{f_1^P} P_0 \to M \to 0 \]
Since \(\text{Ker}(\bigoplus f_i) \cong \bigoplus \text{Ker} f_i \). M is a direct summand of \(\bigoplus f_i \).
Moreover \(\text{Hom} \left(\bigoplus_{i \in J} P_i, M \right) \cong \prod_{i \in J} \left(\bigoplus P_i, M \right) \)
Which is an exact sequence for any projective (resp. injective) module M. Thus M is a n-Strongly Gorenstein projective Module over direct summand.

IV. n-Strongly Projective, Injective and Flat Module over Upper Triangular Matrix
In this section determine the strongly complete projective (resp. injective) resolutions and hence all the n-Strongly projective modules over an upper triangular matrix \(\tau = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix} \) be an artin algebra of matrix.

Let \(X := \left(P \bigoplus (M \otimes_B Q) \right) \), \(f := \left(\begin{array}{cc} \alpha & 0 \\ \beta & M \otimes g \end{array} \right) : X \to X \) with P a projective A-module and Q a projective B-module.

Lemma: If M is an A B bimodule such that , M and \(M_B \) are projective modules and \(\text{Hom}_R(M, A) \) is a projective B-module or injective A-module then X is n-SG-projective (resp. injective) left B-module, then \(M \otimes_B X \) is a n-SG projective A-module.

Proof: Since X is n-SG projective left module there is a complete B-projective resolution
\[0 \to P_{n-1} \xrightarrow{f_{n-1}} \ldots \xrightarrow{f_1} P_0 \to M \to 0 \]
Assume \(n \leq \text{Ker} f_0 \) since \(M_B \) is a projective module.
\[0 \to M \otimes_B P_{n-1} \xrightarrow{id \otimes f_{n-1}} \ldots \xrightarrow{id \otimes f_1} P_0 \otimes_B M \xrightarrow{id \otimes f_0} M \xrightarrow{id \otimes f_0} P_1 \to 0 \]
Is exact, we know that it is a complete projective resolution.

Theorem 2:
1. if \(n/m \) then m- SG projective (R) \(\cap \) n- SG projective (R) = n – SG projective (R)
2. if \(n \nmid m \) and \(m = np + k \) where p is a positive integer and \(0 < k < n \) then m- SG projective (R) \(\cap \) n- SG projective (R) \(\subseteq \) j-SG projective (R)

Proof: 1 it is trivial since \(n/m \)
3. by above m- SG projective (R) \(\cap \) n- SG projective (R) \(\subseteq \) m- SG projective (R) \(\cap \) np- SG projective (R). M \(\in \) n- SG projective (R) \(\cap \) np - SG projective (R)

Then there exist an exact sequence
\[0 \to M \xrightarrow{f_m} P_{m-1} \xrightarrow{f_{m-1}} \ldots \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0 \]
In Mod R with \(P_i \) projective for any \(0 \leq i \leq m - 1 \) put Li = Ker (Pi−1 → Pi) for any \(2 \leq i \leq m \) because M \(\in \) n-SG projective (R). It is easy to see that M and L_i are projectively equivalent, that is there exist projective modules P and Q in Mod R, such that
\[M \oplus P \cong Q \oplus L_i \]

Proposition 2: For any \(n \geq 1 \) n-SG projective (R) is closed under direct sums.

Proof: Let \(\{ M_j \} \) be a family of n-SG projective modules in Mod R then for any \(j \in I \) there exist an exact sequence
\[0 \to \bigoplus_{j \in J} M_j \xrightarrow{f_{n-1}} \bigoplus_{j \in J} P_{n-1}^j \xrightarrow{f_1^j} \ldots \xrightarrow{f_1^j} P_0^j \xrightarrow{f_0^j} M_j \to 0 \]
in Mod R because \(\bigoplus_{j \in J} P_{n-1}^j \) are projective and the obtained exact sequence is still exact after applying the functor \(\text{Hom}_R(\cdot, P) \) when \(P \in \text{Mod R} \) is projective \(\bigoplus_{j \in J} M_j \) is n-SG projective.

Proposition 3: For any module M, the following are equivalent:
1. M is n-Strongly Gorenstein Projective
2. There exist a short sequence \(0 \rightarrow M \xrightarrow{f_n} P_{n-1} \xrightarrow{f_{n-1}} \ldots \ldots P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \rightarrow 0 \) where \(P \) is a projective module and
\(\text{Ext}^1(M, Q) = 0 \) for any projective module \(Q \).

3. There exist a short exact sequence \(0 \rightarrow M \xrightarrow{f_n} P_{n-1} \xrightarrow{f_{n-1}} \ldots \ldots P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \rightarrow 0 \) where \(P \) is a projective module such that for any projective module \(Q \) the short sequence
\(0 \rightarrow \text{Hom}(M, Q) \xrightarrow{f_n} \text{Hom}(P_{n-1}, Q) \xrightarrow{f_{n-1}} \ldots \ldots \text{Hom}(P_1, Q) \xrightarrow{f_1} \text{Hom}(P_0, Q) \xrightarrow{f_0} \text{Hom}(M, Q) \rightarrow 0 \) is exact.

Theorem 3: If a module is \(M \) is \(n \)-Strongly Gorenstein flat then it is a direct summand of a \(n \)-Strongly Gorenstein flat modules.

Proof: A module is Gorenstein projective (resp. Injective) if and only if it is a direct summand of a \(n \)-strongly Gorenstein projective (resp. Injective) module.

Proof: Let \(M \) be a Gorenstein projective. Then there exist a complete projective resolution
\(0 \rightarrow M \xrightarrow{f_n^P} P_{n-1} \xrightarrow{f_{n-1}^P} \ldots \ldots P_1 \xrightarrow{f_1^P} P_0 \xrightarrow{f_0^P} M \rightarrow 0 \)

Such that \(M \cong \text{Ker} f_0^P \).

Consider the exact sequence
\(0 \rightarrow \bigoplus M \xrightarrow{f_n^P} \bigoplus P_{n-1} \xrightarrow{f_{n-1}^P} \ldots \ldots \bigoplus P_0 \xrightarrow{f_0^P} M \rightarrow 0 \)

Since \(\text{Ker}(\bigoplus f_i) = \bigoplus \text{Ker} f_i \), \(M \) is a direct summand of \(\text{Ker}(\bigoplus f_i) \).

Moreover \(\text{Hom}(\bigoplus \bigoplus P_i, M) \cong \prod_{i \in I} (\bigoplus P_i, M) \)

Which is an exact sequence for any projective (resp. Injective) module \(M \). Thus \(M \) is a \(n \)-Strongly Gorenstein projective Module over direct summand.

REFERENCES