Some results on L-spaces

Ramakant Bhardwaj, Sarvesh Agrawal and R.N.Yadava
Deptt. of Mathematics, Truba, Institute of Engg. & Infor. Techn., Bhopal,
Director Gr. Scientists & Head Resources Development Center, R.R.L., Bhopal

ABSTRACT
The present paper deals with establishment of some fixed point and common fixed point results in L-spaces. Common fixed point theorems are proved for two, three and four mappings. Some of them contain rational expressions. AMS Subject Classification: 47 H10.

Keywords: L-spaces, sequence, common fixed point

INTRODUCTION
It was shown by Kashara [4] in 1975 that several known generalization of the Banach contraction theorem can be derived easily from a fixed point theorem in an L-space. Iseki [2] has used the fundamental idea of Kashara to investigate the generalization of some known fixed point theorems in L-spaces. Many other mathematicians Yeh [16], Singh [13], Pachpatte [9], Pathak and Dubey [10], Patel et al, [11], Patel and Patel [12], Som [14], Sao [15], worked for L-spaces. Recently we Bhardwaj et al [1] have also worked on L-spaces. In the present paper a similar investigation for the study of fixed point and common fixed point theorems in L-spaces are worked out. We find some fixed point and common fixed point theorems in L-spaces. The results are stronger in rational expressions that of others. In this paper we find some results on common fixed point in rational expressions for four mappings.

Preliminaries
Definition (3.A): L-Space: Let N be a set of all non-negative integers and X is a non-empty set. A pair (X, \rightarrow) of a set X and a subset \rightarrow of the set X\times X, is called an L-space if \{x_{n}\}_{n\in N}, of \{x_{n}\}_{n\in N}, for every \{x_{n}\}_{n\in N} of \{x_{n}\}_{n\in N}.

Definition (3.B): An L-Space (X, \rightarrow) is said to be separated if each sequence in X converge to at most one point of X.

Definition (3.C): A mapping T of an L-Space (X, \rightarrow) into an L-Space (X, \rightarrow) is said to be continuous

\[x_{n} \rightarrow x \Rightarrow T_{x_{n}} \rightarrow T_{x}, \text{for some subsequence}\ \{x_{n}\}_{n\in N}, \{x_{n}\}_{n\in N}. \]

Definition (3.D): Let d be non-negative extended real valued function on X \times X,

\[0 \leq d(x, y) < \infty \]

for all x, y \in X, an L-Space (X, \rightarrow) is said to be d-complete if each sequence,
\{x_n\}_{n \in \mathbb{N}}, \text{ in } X \text{ with } \sum d(x_n, y_{n+1}) < \infty \text{ converge to at most one point of } X.

Lemma (3.E): (K.S.): Let \((X, \to)\) be an L-Space which is d- complete for a non-negative real valued function \(d\) on \(X \times X\), if \((X, \to)\) is separated, then
d \((x, y) = d(y, x) = 0\), implies \(x = y\) for every \(x, y\) in \(X\).

RESULTS

Theorem (4.1): Let \((X, \to)\) be a separated L-Space which is d- complete for a non-negative real valued function \(d\) on \(X \times X\) with \(d(x, x) = 0\) for all \(x\) in \(X\). Let \(E\) be a continuous shelf map of \(X\), satisfying the conditions.

\(\text{(4.1a)}\)
\[
[d(Ex, Ey)] \leq \alpha \left[d(x, Ex)d(y, Ey) + d(x, Ex)d(y, Ey) + d(y, Ex)d(y, Ex) + d(x, Ey)d(y, Ey) \right]^{\frac{1}{2}}
\]
\(\forall x, y \in X\) and \(0 < \alpha < 1\), then \(E\) has a unique fixed point.

Proof: Let \(x_0\) be an arbitrary point in \(X\); define sequence \(\{x_n\}\) recurrently,

\(E x_0 = x_1, \quad E x_1 = x_2, \quad \ldots \quad E x_n = x_{n+1},\)

Where, \(n = 0, 1, 2, 3, \ldots\)

Now by (4.1a) we have
\[
d(x_1, x_2) = d(Ex_0, Ex_1)
\]
\[
\leq \alpha \left[d(x_0, Ex_0)d(x_1, x_1) + d(x_0, Ex_0)d(x_1, x_0) + d(x_1, Ex_1)d(x_1, x_0) + d(x_0, Ex_1)d(x_1, x_0) \right]^{\frac{1}{2}}
\]
\[
= \alpha \left[d(x_0, x_1)d(x_1, x_2) + d(x_0, x_1)d(x_1, x_1) + d(x_1, x_2)d(x_1, x_1) + d(x_0, x_2)d(x_1, x_1) \right]^{\frac{1}{2}}
\]
\[
d(x_1, x_2) \leq \alpha \left[d(x_0, x_1)d(x_1, x_2) \right]^{\frac{1}{2}}
\]
Similarly,
\[
d(x_2, x_3) \leq \alpha \left[d(x_1, x_2) \right]^{\frac{1}{2}} = \alpha^2 \left[d(x_0, x_1) \right]
\]

For every natural number we can say that
\[
\sum d(x_n, x_{n+1}) \leq \infty
\]
By d-completeness of the space, the sequence \(\{E^nx_0\}, \ n \in \mathbb{N}\) converges to some \(u\) in \(X\). By continuity of \(E\), the sub-sequence \(\{E^nx_0\}\) also converges to \(u\).

\[
\lim_{i \to \infty} E^{n+1}x_0 = Eu \Rightarrow \lim_{i \to \infty} E^nx_0 = Eu \Rightarrow E(\lim_{i \to \infty} x_0) = Eu \Rightarrow \lim_{i \to \infty} E^{n+1}x_0 = Eu
\]
\[
\Rightarrow Eu = u, \text{ so } u \text{ is a fixed point of } E.
\]

Uniqueness: In order to prove that \(u\) is the unique fixed point of \(E\), if possible let \(V\) be any other fixed point of \(E\), \((v \neq u)\). Then
\[
d(u, v) = d(Eu, Ev)
\]
\[
d(Eu, Ev) \leq \alpha \left[d(u, Eu)d(v, Ev) + d(u, Eu)d(v, Ev) + d(v, Ev)d(v, Eu) + d(u, Ev)d(v, Eu) \right]^{\frac{1}{2}}
\]
\[
d(u, v) \leq \alpha^2 d(u, v)
\]
This is a contradiction because \(\alpha < 1\). So \(E\) has a unique fixed point in \(X\).
Theorem (4.2): Let \((X, \rightarrow)\) be a separated L-Space which is d-complete for a non-negative real valued function \(d\) on \(X \times X\) with \(d(x,x)=0\) for all \(x\) in \(X\). Let \(E\) and \(T\) be two continuous shelf mappings of \(X\), satisfying the conditions:

\[
\mathcal{E} \subseteq \mathcal{T}
\]

\[
\begin{align*}
\alpha & \geq \delta + \eta \\
\alpha & > 0
\end{align*}
\]

\(\forall x, y \in X, \alpha, \beta, \gamma, \delta, \eta \geq 0, \text{ with } \alpha + \delta + \eta < 1. \) Then \(E\) and \(T\) have a unique common fixed point.

Proof: Let \(x_0\) be an arbitrary point in \(x\), since \(E(x) \subseteq T(x)\)

We can chose \(x_1 \in X\) such that \(E_0 = T_1\), \(E_1 = T_2\)

\[
E_{n+1} = T_{n+2}
\]

for \(n=1, 2, 3, \ldots\)

By d-completeness of \(x\), the sequence \(\{T^n x_0\}_{n \in \mathbb{N}}\) converges to some \(u \in X\). Since \(E(x) \subseteq T(x)\), So \(E(T(u)) \rightarrow E_u\), and \(T(E(u)) \rightarrow T_u\)

we have, \(E_u = T_u\)

Since \(\lim_{n \to \infty} T^n X_0 = u, T\) (\(\lim_{n \to \infty} T^n X_0) = T_u\) \hspace{1cm} (4.2b)

This implies that \(T_u = u\)

Hence \(T_u = E_u = u\)

Thus \(u\) is common fixed point of \(E\) and \(T\).

Uniqueness: For the uniqueness of the common fixed point, if possible let \(v\) be any other common fixed point of \(E\) and \(T\); Then from (4.2b)

\[
\begin{align*}
d(u, v) &= d(Eu, Ev) \\
d(Eu, Ev) &\leq \alpha [d(Tu, Eu) + d(Tv, Ev) + \delta d(Tu, Eu) + d(Tv, Ev)]
\end{align*}
\]

Which is a contradiction because \(\delta < 1\)

Hence \(E\) and \(T\) have unique common fixed point in \(X\).

Now we will find some common fixed theorems for three mappings.
Theorem (4.3) Let (X, \rightarrow) be a separated L-space which is d-complete for a non-negative real valued function d on $X \times X$ with $d(x,x) = 0$ for all x in X. Let E, F, T be three continuous shelves mapping of X, satisfying the conditions:

\[(4.3a)\ ET = TE, FT = TF, E(X) \subset T(X)\ And\ F(X) \subset T(X)\]

\[(4.3b)\ d(E(x), F(y)) \leq \alpha \left[d(T(x), E(x)) + d(T(y), F(y)) + d(T(x), E(x)) + d(T(y), F(y)) \right]^\frac{1}{2}\]

for all $x, y \in X$ and $\alpha \geq 0$ with $\alpha < 1$. Then E, F, T have unique common fixed point.

Proof: Let x_0 be a point in X. Since $E(X) \subset T(X)$, we can choose a point x_1 in X such that $Tx_1 = Ex_0$, also $F(x) \subset T(X)$. We can choose a point x_2 in X such that $Tx_2 = Fx_1$.

In general we can choose the point

\[Tx_{2n+1} = Ex_{2n}, \quad (4.3c)\]

\[Tx_{2n+2} = Fx_{2n+1}, \quad (4.3d)\]

For every $n \in \mathbb{N}$, we have

\[\left[d(Tx_{2n+1}, Tx_{2n+2}) \right] = \left[d(Ex_{2n}, Fx_{2n+1}) \right]\]

\[d(Ex_{2n}, Fx_{2n+1}) \leq \alpha \left[d(Tx_{2n}, Ex_{2n}) + d(Tx_{2n+1}, Ex_{2n+1}) \right] + d(Tx_{2n+1}, Ex_{2n}) \left[d(Tx_{2n+1}, Ex_{2n}) \right]^\frac{1}{2}\]

\[d(Tx_{2n+1}, Tx_{2n+2}) \leq \alpha^2 d(Tx_{2n}, Tx_{2n+1})\]

For $n = 1, 2, 3, \ldots$

\[\left(Tx_{2n+1}, Tx_{2n+2} \right) \leq k d(Tx_{2n}, Tx_{2n+1}), \text{ where } k = \alpha^2\]

Similarly we have

\[\left(Tx_{2n+1}, Tx_{2n+2} \right) \leq k^2 d(Tx_1, Tx_0)\]

\[d(Tx_{2n+1}, Tx_{2n+2}) \leq k^n d(Tx_1, Tx_0)\]

\[\sum_{i=0}^{\infty} d(Tx_{2i+1}, Tx_{2i+2}) < \infty\]

Thus the d-completeness of the space implies the sequence $\{T^n x_0\}_{n \in \mathbb{N}}$ converges to some u in X. So $(E^n x_0)_{n \in \mathbb{N}}$ and $(F^n x_0)_{n \in \mathbb{N}}$ also converges to the same point u respectively.

Since $E, T,$ and F are continuous, there is a subsequence t of $\{T^n x_0\}_{n \in \mathbb{N}}$ such that $E(T(t)) \rightarrow E(u), T(E(t)) \rightarrow T(u), F(T(t)) \rightarrow F(u)$, and $T(F(t)) \rightarrow T(u)$.

Hence we have $Eu = Fu = Tu$ \hspace{2cm} (4.3 e)

Thus $T(U) = T(Eu) = E(Fu) = T(Fu) = F(Tu) = E(Tu) = F(Eu) = F(Eu)$ \hspace{2cm} (4.3 f)

So we have, if $Eu \neq F(Eu)$

\[d(Eu, F(Eu)) \leq \alpha \left[d(Tu, Eu) + d(TU, FEu) + d(Tu, Eu) \right] \left[d(TE, Eu) \right]^\frac{1}{2}\]

\[d(Eu, F(Eu)) \leq \alpha \left[d(Tu, F(Eu)) + d(Tu, F(Eu)) \right]^\frac{1}{2}\]

\[d(Eu, F(Eu)) \leq \delta^2 d(Eu, F(Eu))\]

Which is a contradiction because $\delta < 1$.

Hence $Eu = F(Eu)$ \hspace{2cm} (4.3 g)

So $Eu = F(Eu) = T(Eu) = E(Eu)$

Hence Eu is a common fixed point of $E, F,$ & T.

Uniqueness: Let $u \neq v$ be two common fixed points of $E, F, \& T$.

Then we have
\[d(u,v) = d(Eu,Fv) \]
\[d(Eu,Fv) \leq \alpha [d(Tu,Eu) + d(Tv,Fv)] \]
\[d(u,v) \leq [\delta]^2 \cdot d(u,v) \]
Which is a contradiction, because \(\delta < 1 \)
Hence \(u = v \).
So \(E, F \) & \(T \) have unique common fixed point.

Theorem (4.4) Let \((X, \rightarrow) \) be a separated \(L \) space which is \(d \)-complete for a non-negative real valued function \(d \) on \(X \times X \) with \(d(x,x) = 0 \) for each \(x \) in \(X \).

Let \(E, F \) and \(T \) be three continuous self mapping of \(X \) satisfying (4.2.6 a) and
\[d(E^x x, F^x y) \leq \alpha [d(Tx, E^x x) + d(Tv, F^x y) + d(Ty, E^x x) + d(Ty, E^x x) + d(Tv, F^x y) + d(Ty, E^x x)] \]
\[\text{---------- (4.4a)} \]
For all \(x, y \) in \(X \), \(Tx \neq Ty \), \(\alpha \geq 0 \) with \(\alpha < 1 \),
If some positive integer \(p, q \) exists such that \(E^p, F^q \) and \(T \) are continuous, Then \(E, F, T \) have a unique fixed point in \(X \).

Proof: It can be proved easily by the help of (4.3).
Now we will prove some common fixed point theorem for four mappings, which contains rational expressions.

Theorem (4.5) Let \((X, \rightarrow) \) be a separated \(L \)-Space which is \(d \)-complete for a non-negative real valued function \(d \) on \(X \times X \) with \(d(x,x) = 0 \) for all \(x \) in \(X \). Let \(E, F, T \) and \(S \) be continuous shelf mappings of \(X \), satisfying the conditions:
\[E S = S E, F T = T F, E(X) \subset T(X) \text{ and } F(X) \subset S(X) \]
\[(4.9b) \quad d(E x, F y) \leq \alpha \max \left\{ \frac{d(S x, E x)}{d(S y, E y)}, \frac{d(T y, F y) + d(E x, T y)}{d(S y, T y)} \right\}, \text{ for all } x, y \in X \]
with \(\frac{d(S x, T y)}{d(E x, T y)} \neq 0 \) and \(\alpha < 1 \), then \(E, F, T \) and \(S \) have a unique fixed point in \(X \).

Proof: Let \(x_0 \in X \), there exists a point \(x_1 \in X \), such that \(Tx_1 = Ax_0 \), and for this point \(x_1 \), we can choose a point \(x_2 \in X \) such that \(Bx_1 = Sx_2 \) and so on inductively, we can define a sequence \(\{y_n\} \) in \(X \) such that \(y_{2n} = Tx_{2n+1} = Ex_2n \) and \(y_{2n+1} = Sx_{2n+2} = Fx_{2n+1} \), where \(n = 0, 1, 2 \ldots \)
we have, \(d(y_{2n}, y_{2n+1}) = d(Ex_{2n}, Fx_{2n+1}) \)
\[\leq \alpha \max \left[\frac{d(Sx_{2n}, Ex_{2n}) + d(Ex_{2n}, Tx_{2n+1})}{d(Sx_{2n}, Tx_{2n+1})}, \frac{d(Sx_{2n}, Ex_{2n}) + d(Ex_{2n}, Tx_{2n+1})}{d(Sx_{2n}, Tx_{2n+1})} \right] \]
\[= \alpha \max \left[\frac{d(Sx_{2n}, Ex_{2n}) + d(Ex_{2n}, Tx_{2n+1})}{d(Sx_{2n}, Tx_{2n+1})}, \frac{d(Sx_{2n}, Ex_{2n}) + d(Ex_{2n}, Tx_{2n+1})}{d(Sx_{2n}, Tx_{2n+1})} \right] \]
\[= \alpha \max \left[d(Tx_{2n+1}, Fx_{2n+1}), d(Sx_{2n}, Tx_{2n+1}) \right] \]
Case 1st: \(\max \left[d(Tx_{2n+1}, Fx_{2n+1}), d(Sx_{2n}, Tx_{2n+1}) \right] = d(Tx_{2n+1}, Fx_{2n+1}) \)
Then \(d(Ex_{2n}, Fx_{2n+1}) \leq \alpha d(Ex_{2n}, Fx_{2n+1}) \)
Which is not possible, because \(\alpha < 1 \). So taking max \(d(Tx_{2n+1}, Fx_{2n+1}), d(Sx_{2n}, Tx_{2n+1}) \) = \(d(Sx_{2n}, Tx_{2n+1}) \)
Hence \(d(y_{2n}, y_{2n+1}) \leq \alpha d(Sx_{2n}, Tx_{2n+1}) \)
\[d(y_{2n}, y_{2n+1}) \leq \alpha d(y_{2n-1}, y_{2n}) \]
For every integer $p > 0$, we get
\[
d(y_n, y_{n+p}) \leq d(y_{n+p}, y_{n+1}) - d(y_{n}, y_{n+1}) + d(y_{n+p}, y_{n+1})
\]
\[
d(y_n, y_{n+p}) \leq \frac{\alpha^p}{1 - \alpha} d(y_{n}, y_{n+1})
\]

Letting $n \to \infty$, we have $d(y_n, y_{n+p}) \to 0$. Therefore $\{y_n\}$ is a Cauchy sequence in X. By d-completeness of X, $\{y_n\}_{n \in \mathbb{N}}$ converges to some $u \in X$. So subsequence $\{E(x_{2n})\}, \{F(x_{2n+1})\}, \{T(x_{2n})\}$ and $\{S(x_{2n+1})\}$ of $\{y_n\}$ also converges to same point u. Since E, F, T and S are continuous, such that
\[
E[S(x_n)] \to E(u), S[E(x_n)] \to S(u), F[T(x_n)] \to F(u), T[F(x_n)] \to T(u)
\]
So, $E(u) = S(u) = u, F(u) = T(u) = u$. So E, F, S and T have common fixed point.

Uniqueness: In order to prove uniqueness of common fixed point, let v be another fixed point of E, F, T and S, such that $v \neq u$,
\[
d(u, v) = d(E(u, v))
\]
\[
\leq \alpha \max \left[d(S(u, v), E(u, v)) \right] \leq \alpha \max \left[d(S(u, v), E(u, v)) \right] = \alpha \max \left[d(S(u, v), E(u, v)) \right]
\]
\[
d(u, v) \leq \alpha d(u, v), this is a contradiction because $\alpha < 1$
\]
Hence u is the unique common fixed point of E, T, F and S.

This completes the proof.

Theorem (4.6) Let (X, \to) be a separated L-Space which is d-complete for a non-negative real valued function d on $X \times X$ with $d(x, x) = 0$

\[
\forall x \in X, d(E, F, T)$ and S be continuous shelf mappings of X, satisfying the conditions:
\[
E[S(x)] \subseteq T(X) \text{ and } F(X) \subseteq S(X)
\]
\[
d(x, y) = \alpha \max \left[d(S(x, y), E(x, y)) \right] \leq \alpha \max \left[d(S(x, y), E(x, y)) \right] = \alpha \max \left[d(S(x, y), E(x, y)) \right]
\]
\[
d(x, y) \leq \alpha d(x, y), this is a contradiction because $\alpha < 1$
\]
Hence u is the unique common fixed point of E, T, F and S.

This completes the proof.

Theorem (4.7) Let (X, \to) be a separated L-Space which is d-complete for a non-negative real valued function d on $X \times X$ with $d(x, x) = 0$ for all x in X. Let E, F, T and S be continuous shelf mappings of X, satisfying the conditions:

\[
E[S(x)] \subseteq T(X) \text{ and } F(X) \subseteq S(X)
\]
\[
d(x, y) = \alpha \max \left[d(S(x, y), E(x, y)) \right] \leq \alpha \max \left[d(S(x, y), E(x, y)) \right] = \alpha \max \left[d(S(x, y), E(x, y)) \right]
\]
\[
d(x, y) \leq \alpha d(x, y), this is a contradiction because $\alpha < 1$
\]
Hence u is the unique common fixed point of E, T, F and S.

This completes the proof.
On applying the process same as in theorem (4.5)
\[d(y_{2n}, y_{2n+1}) = d(Ey_{2n}, Fy_{2n+1}) \]
\[
\leq \alpha \max \left\{ \frac{d(Tx_{2n}, Ex_{2n})}{(Sx_{2n} + Ex_{2n})}, \frac{d(Tx_{2n+1}, Ex_{2n+1})}{(Sx_{2n} + Ex_{2n+1})} \right\}
\]
\[
\leq \alpha \max \left\{ d(y_{2n}, y_{2n+1}) \left[d(y_{2n-1}, y_{2n}) + d(y_{2n}, y_{2n+1}) \right], d(y_{2n-1}, y_{2n}) \right\}
\]

Case I:
If \(\max \left\{ d(y_{2n}, y_{2n+1}) \left[d(y_{2n-1}, y_{2n}) + d(y_{2n}, y_{2n+1}) \right], d(y_{2n-1}, y_{2n}) \right\} = d(y_{2n-1}, y_{2n}) \)
Then by case first of theorem (4.5), it is a contradiction.

Case II:
If \(\max \left\{ d(y_{2n}, y_{2n+1}) \left[d(y_{2n-1}, y_{2n}) + d(y_{2n}, y_{2n+1}) \right], d(y_{2n-1}, y_{2n}) \right\} = d(y_{2n-1}, y_{2n}) \)
Then by theorem (4.5), it is clear that, E, F, T and S have unique common fixed point.

Case III:
\[\max \left\{ d(y_{2n}, y_{2n+1}) \left[d(y_{2n-1}, y_{2n}) + d(y_{2n}, y_{2n+1}) \right], d(y_{2n-1}, y_{2n}) \right\} \]
Then
\[d(y_{2n}, y_{2n+1}) \leq \alpha \left[d(y_{2n-1}, y_{2n}) + d(y_{2n}, y_{2n+1}) \right] \]
\[d(y_{2n}, y_{2n+1}) \leq \frac{\alpha}{1-\alpha} d(y_{2n-1}, y_{2n}) \]
\[d(y_{2n}, y_{2n+1}) \leq k d(y_{2n-1}, y_{2n}), \quad \text{where} \quad k = \frac{\alpha}{1-\alpha} < 1 \]

As applying the same process in second part of theorem, we get a unique common fixed point for E, F, T and S. This completes the proof.

REFERENCES

