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ABSTRACT: The mass transport equation for chlorine concentration decay in drinking water pipe line 

system  by considering  advection term in axial direction, first order decay kinetics and transport of chlorine 

from bulk flow to the wall, is solved using integral transform technique. For small Peclet number Pe the value  
mass chlorine concentration is obtained at different locations and shown graphically. Hankel transformation  

can  efficiently  be used to remove singularity in such type of  transport equation. 
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INTRODUCTION 
There are many models available in the literature for 

chlorine concentration decay in water pipe line network 

but every model has its own limits. Clark et al. [4] 

considered how chlorine residuals can vary throughout 

the day at different locations in the distributive systems. 

Clark et al. [5] used first order kinetics and rate of 

chlorine decay in their model. They showed that pipe 

radius and the fluid velocity affect the propagation of 

chlorine residual levels, disinfection efficiency and the 

formation of disinfection by-products. Biswass et al. [1] 
considered two dimensional axi-symmetric steady state 

model without considering the transport of chlorine 

from bulk flow to the pipe wall Reddy et al. [14] 

studied the weighted least-square method for some 

parameter estimation in water distribution network, like 

model pressure heads, pipe flow, head loss in pipes and 

consumptions in flows. David and Bryan [6] considered 

an adjective transport model by neglecting the 

contribution of radials as well as axial diffusion terms. 

A comparison was made between the formulation and 

computational performance of numerical models for 
modeling the transient behavior of water quality in 

drinking water distribution system by Rossman and 

Paul [15]. Sam et al. [16] considered a model for the 

study of the behavior of bacterial biomass distribution 

networks taking into account biodegradable dissolved 

organic carbon, temperature, residual chlorine and PH 

etc.  Kumar et al. [10] studied the biological 

pharmacokinetic effects on human health  of some 

water soluble chemicals. Rossman and Paul [15] 

considered one dimensional mass conservation equation 

for a dilute concentration of total free chlorine in water 

flowing through a cross section of a pipe which gives a 
mechanism for considering the loss or growth of a 

substance by reaction as it travels through the water 

distribution system. Rashidual Islam et al. [13] used 

inverse method to evaluate the source method to 

calculate the source concentration of chlorine which is 

required to meet a specified value at a particular point 

in the network. They claimed that their model directly 

calculate the chlorine concentration needed at source. In 

their model they have considered one dimensional 

transport equation with first order reaction but they 

have not considered diffusion term in their model. 

Clark [3] developed a mathematical model to predict 
the total trihalomethens and chlorine residuals based on 

the consumption on the chlorine. He suggested that the 

model can be used to evaluate the balance between 

microbiological and disinfection by-products resist 

associated with chlorine that was used to disinfect the 

drinking water. He has not acknowledged bromide and 

brominated by-products in his model. Hoefel et al. [8] 

in micro trial resistant to chlorination has observed both 

of these in lab studies and in full scale chlorine 

disinfection practice for water and waste-water 

treatment. Osman and Metin [12] studied a two 
dimensional mathematical model for chlorine 

concentration decay in water and solved the chlorine 

transport equation numerically by finite difference 

method. They have not acknowledged transport of 

chlorine from bulk flow towards the pipe wall. James et 

al. [9] distinguished six different kinetic models for the 

decay of free chlorine by taking different samples from 

different water reservoirs as well as different source. 

They advanced that the first order kinetics decay 

models are reasonable in general. Velitchko et al. [17] 

acknowledged one dimensional mass transport equation 

and studied an Eulerian and Lagrangian numerical 
solution for that.  
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They suggested that the model could be applied to simulate fluoride and chlorine propagation in a real network for 

which published data of field measurements. General regression neural networks are discussed for forecasting 

chlorine residuals in South Australia by Bowden Gavin et al. [2]. They claimed that the general regression neural 

networks models were available to predict up to a very good label of accuracy of chlorine labels in drinking water 

and up to 72 hours in advance. Gibbs et al. [7] used three different data driven techniques to predict chlorine 
concentrations in the Hope valley water distribution system of South Australia. They claimed that data driven 

techniques were relatively successful in predicting chlorine concentration in the water distribution system. The 

scholars suggested that their model gave a more accurate approximate solution of the two dimensional steady-state 

chlorine transport equation under turbulent condition. The main drawback of model is that they have not considered 

chlorine decay to be time dependent. Kumar and Mishra [11] studied the effect of transport ratio on source term by 

considering the one dimensional mass transport equation by ignoring advection term. In this paper I have considered  

two dimensional and unsteady state mathematical model for chlorine dispersion for axi-symmetric flow in a pipe 

line system. The transport of chlorine in axial direction due to advection term, first order decay kinetics and 

transport of chlorine from bulk flow to the wall are also considered  that fulfill almost all requirement of a complete 

model for chlorine concentration decay in drinking water pipe line system.  

MATHEMATICAL MODEL 
       Consider the mass transport equation for chlorine concentration as  
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where 
x

D   is diffusion coefficient in  x direction, 
r

D is diffusion coefficient in r  direction , U  is initial velocity 

component along  x axes, 
b

k  and 
f

k  are the chlorine decay rate constant for bulk flow(
1

s
−

) and mass transfer 

coefficient (m/s) respectively 
w

C  is the chlorine concentration at wall (
3/kg m ) and 

h
r  is the hydraulic radius of 

the pipe wall. As we see the term 1 C

r r

∂

∂

 is present in the above mass transport equation so there is a singularity at 

0r =  i.e. on the central line of pipe. To overcome the problem of singularity we have used finite Hankle 

Transformation technique, Senddon [18].  Assuming that the reaction of chlorine at the pipe wall is of first order 

with respect to the wall concentration  
w

C  and that it proceeds at the same rate as chlorine is transported to the wall 

gives the following mass balance equation for the chlorine at the wall. 
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Substituting the value of 
w

C  from equation (2) into equation (1) 
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The initial and boundary conditions are 
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and wall condition is       0
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Introducing the following non dimensional quantities are defined by  
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where 0r  is the pipe radius.  

 

 



                                                                                      Jaipal                                                                                       50 

2 2 2

2 2 2

0

1 1 1
( ) 0r

e x e

DC C C L C C
KC

t p x x D r p r r r

∂ ∂ ∂ ∂ ∂
− + − + + =

∂ ∂ ∂ ∂ ∂
    (9) 

where 

( )
w f

b

h w f

k k
K k

r k k
= +

+
 and 

e

x

UL
p

D
=  

The initial and boundary condition are 
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Applying finite Hankel transformation  on equation (9) and equations (10) to (13), gives 
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nλ is finite Hankel transformation parameter as determined by the transcendental equation 
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= . 0 ( )nJ λ  is the zero order Bessel function of the first kind. 
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The initial and boundary conditions become 
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Again introducing following transformation to solve equation (14) 
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The initial and boundary condition (17) to (19) become 
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Solving equation (21) together with initial boundary conditions (22) to (24) by Laplace Transformation technique 

and then putting the value of  

( , )P x t  in equation (20), we get 
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Finally putting equations (25) in equation (16), we get 
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where 0
n

λ ≠  

RESULTS AND DISCUSSION 
 We have not considered the case for large Peclet number Pe  as  the equation reduces to a simple linear equation. 

For small Peclet number Pe  the solution of equation (9) is given by equation (20). Initially chlorine is supposed to 

injected at x = 0, r = 0. To observe the effect of diffusivity, fluid velocity and chlorine consumption rate on the 

chlorine concentration in the water figure 1 to figure 3 are plotted for various values of parameters. It is clear from 

Fig. 1 that chlorine concentration decreases very fast along the axial distance while slowly along radial distance. 

Chlorine concentration decreases rapidly from x = 0 to x = 0.6 and after that it becomes constant. It appears that   

after x = 0.6 concentration is zero. In fact it is not zero and x = 0.6, C = 0.007125 while at x = 0.8, C = 0.000267, and 
x = 1.0, C = 0.00000391 (at  r = 0) which are very near to zero. To maintain the safe limit for chlorine concentration 

we have to inject chlorine again after x = 0.4 and before x = 0.6. The variation of chlorine concentration along radial 

direction is very small and it is difficult to observe from the figure. But we can see the change from the numerical 

value as at x = 0.1, r = 0, C = 0.643566 while at x = 0.1, 1r = (i.e. at the wall of pipe) C = 0.469745. The effect of 

chlorine consumption rate K (which  depends upon transport of chlorine from bulk flow to the wall, chlorine decay 

rate constant and mass transfer coefficient) can be observed by comparing figure 1 (for K = 0.001) and Fig. 2 (for 

K = 0.01).  
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    Fig. 1. Change in chlorine concentration                                       Fig. 2. Change in chlorine concentration 

                 with  x and r, K=0.001.                                                                     with x and r, K=0.01.             

                                                                       

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 3. Variation of chlorine concentration with x and r, K = 0.001, t = 0.8. 

As the chlorine consumption rate K increases from K = 0.001 to K = 0.01, the more chlorine is transported towards 

the pipe wall and less chlorine remains in the bulk flow. For K = 0.001 (Fig. 1) the chlorine concentration 

approaches to zero after x = 0.6 while for K = 0.01 (Fig. 2) chlorine concentration approaches to zero before x = 0.6. 

As this model is time dependent so to see the dependence of chlorine concentration on time we compare Fig. 1 and 

Fig.  3. At t = 0.1, C = 0.00000391 (in fig.1 at x = 0, r = 0 ) while at t = 0.8, C = 0.0857123 (in fig. 3 at x = 1, r = 0 ) 

which is true fact since initially the chlorine injected at x = 0 and r = 0 and it takes some time to reach at x = 1.0 ( i.e. 

end of the pipe). 

CONCLUSION 
 A two dimensional unsteady state mathematical model for transport of chlorine in an axi-symmetric pipe is 

considered in this paper together with source term and first order decay kinetics which fulfill almost all the 

requirements of a complete model.  
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The analytical solution for chlorine concentration in the above model is obtained by using Hankel transformation 

and the graphical results for low Peclet number are shown. The model can be used effectively to locate the position 

for buster chlorination to maintain the safe limit of the drinking water.    
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