On lin's principle of minimum information

O.P. Vinocha and Prem Singla

Department of Mathematics College of Engineering and Technology, Ferozepur (PB) INDIA.

(Received 25 Dec., 2009, Accepted 27 Feb., 2010)

ABSTRACT: Lind and Solana's principle of minimum information are discussed. New generalized Lin's cross entropies are introduced and its application of Lin's principle of minimum information are examined.

Keywords: Minimum Information, cross-entropy, Maximum Like hood, Csiszer's measure.

INTRODUCTION

Let $g(x, \theta)$ be a known Probability density function of continuous random variate defined over the interal $[X_0, X_{n+1}]$. However, the parameter θ is known and to estimate it. We draw a random sample X_1, X_2, \ldots, X_n from the population and rearrange its members, so that

$$X_0 < X_1 < X_2 < \dots < X_i < X_{i+1} < X_n < X_{n+1}$$
 ...(1)

The usual method for estimation of θ is based on [1] principle of maximum likehood according to which estimate θ by maximizing likehood function;

$$L \cong g(x_1, \theta) g(x_2, \theta) \dots g(x_n, \theta) \dots (2)$$

Recenly, [5] have suggested a two-stage method of estimating θ . In the first stage we assume θ to be known and choose a function $f(x, \theta)$ which satisfies

$$f(x, \theta)dx = \frac{1}{n+1}, \quad i = 0, 1, 2, ..., n$$
 ...(3)

So that the probability in each of the (n + 1) intervals defined by the n sample points are 1/(n + 1) each and which is such that

$$f(x, \theta) In = \frac{f(x, \theta)}{g(x, \theta)} dx$$
 ...(4)

is minimum *i.e.*, cut of all the density functions satisfying constraints (3) we choose that function which is 'closest' to given $g(x, \theta)$ in the senese that it minimizes [2] measure of cross-entropy of $f(x, \theta)$ from $g(x, \theta)$. Thus, first stage determines $f(x, \theta)$ for any given θ . The object of the IInd stage is to choose θ to minimize (4) for the function $f(x, \theta)$ determined by the first stage.

The first stage gives,

$$f(x, \theta) = \frac{g(x, \theta)}{k_i}, X_1 < X < X_{i+1}$$
 ...(5)

Where,
$$k_i = (n+1) \int_{Y}^{X_{i+1}} g(x, \theta) dx$$
, $i = 0, 1, 2,, n...(6)$

the second stage gives that we chose θ to minimize

$$\sum_{i=0}^{n} \int_{Y}^{X_{i+1}} \frac{g(x,\theta)}{k_i}, \log \frac{1}{k_i} dx = -\frac{1}{n+1} \sum_{i=0}^{n} \log k_i \qquad \dots (7)$$

In other words, we chose θ by minimizing

$$\sum_{i=0}^{n} \log \int_{X_{i}}^{X_{i+1}} g(x, \, \theta) \, dx \qquad ...(8)$$

ISSN: 0975-1718

[7] This can be compared with the principle of maximum likehood which suggests that we chose θ to minimize

$$\sum_{i=0}^{n} \log g(x, \theta) dx \qquad \dots (9)$$

[6] introduce a new directed divergence, which overcomes the difficulty of absolute continuity. This new divergence measure denoted by k(P, Q) between two probability distributions P and Q is defined as

$$k(P, Q) = \sum_{X \in X} P(x) \log \frac{p(x)}{1/2P(x) + 1/2Q(x)}$$

[8] introduced a new general class of diveragence measures as

$$M(P, Q, a) = P(x) \log \frac{p(x)}{[aP(x) + bQ(x)]}$$
$$0 < a, b < 1 \text{ and } a + b = 1$$

CSISER'S CLASS OF MEASURE OF CROSS-NTROPY

[4] gave the classes of measures of cross-entropy,

$$\int g(x,\theta) \phi \left[\frac{f(x,\theta)}{g(x,\theta)} \right] dx \text{ and } \int f(x,\theta) \phi \left[\frac{g(x,\theta)}{f(x,\theta)} \right] dx \dots (10)$$

Where $\phi(.)$ is twice-differentiable convex function for which $\phi(1)=0$

For different function $\phi(.)$, (10) can represent a variety of measures of cross-entropy. Using these for the first stage, we get

$$\phi' \frac{f(x,\theta)}{g(x,\theta)} = \text{Const.}$$

or
$$\left[\frac{g(x,\theta)}{f(x,\theta)}\right] - \frac{g(x,\theta)}{f(x,\theta)} \phi' \left[\frac{g(x,\theta)}{f(x,\theta)}\right] = \text{Const.}$$
 ...(11)

Now we define the classes of measures of new cross-entropy

$$\int g(x,\theta) \phi \left[\frac{2f(x,\theta)}{f(x,\theta) + g(x,\theta)} \right] dx$$
and
$$\int f(x,\theta) \phi \left[\frac{2g(x,\theta)}{g(x,\theta) + f(x,\theta)} \right] dx \qquad \dots (12)$$

$$g(x,\theta) \frac{2[f(x,\theta) + g(x,\theta) - f(x,\theta)]}{[f(x,\theta) + g(x,\theta)]^2} \phi'$$

$$\left[\frac{2f(x,\theta)}{f(x,\theta) + g(x,\theta)} \right] = \text{Const.}$$
and
$$\phi \left[\frac{2f(x,\theta)}{f(x,\theta) + g(x,\theta)} \right] \frac{2[g(x,\theta)]^2}{[f(x,\theta) + g(x,\theta)]^2}$$

$$\phi' \left[\frac{2f(x,\theta)}{f(x,\theta) + g(x,\theta)} \right] = \text{Const.} - \frac{2f(x,\theta) + g(x,\theta)}{[f(x,\theta) + g(x,\theta)]^2}$$

$$= \text{Const.} \qquad \dots (13)$$

Whatever be the function $\theta(.)$, this gives (5) and (6) so that the first stage gives the same result for all csiszer's measure of cross-entropy. For the second stage we have to choose θ to minimize

$$\sum_{i=1}^{n} \int_{X_{i}}^{X_{i+1}} g(x,\theta) \phi \left[\frac{2f(x,\theta)}{f(x,\theta) + g(x,\theta)} \right] dx$$
or
$$\sum_{i=1}^{n} \int_{X_{i}}^{X_{i+1}} f(x,\theta) \phi \left[\frac{2g(x,\theta)}{g(x,\theta) + f(x,\theta)} \right] dx$$

$$\sum_{i=1}^{n} \int_{X_{i}}^{X_{i+1}} g(x,\theta) \phi \left[\frac{2}{1 + \frac{g(x,\theta)}{f(x,\theta)}} \right] dx$$
or
$$\sum_{i=0}^{n} \int_{X_{i}}^{X_{i+1}} f(x,\theta) \phi \left[\frac{2}{1 + \frac{f(x,\theta)}{g(x,\theta)}} \right] dx$$

$$\sum_{i=1}^{n} \int_{X_{i}}^{X_{i+1}} g(x,\theta) \phi \left[\frac{2}{1 + k_{i}} \right] dx \text{ or } \sum_{i=0}^{n} \int_{X_{i}}^{X_{i+1}} \frac{g(x,\theta)}{k_{i}} \phi \left[\frac{2k_{i}}{1 + k_{i}} \right] dx$$
or
$$\sum_{i=1}^{n} \phi \left[\frac{2}{1 + k_{i}} \right] \int_{X_{i}}^{X_{i+1}} g(x,\theta) dx$$
or
$$\sum_{i=0}^{n} \phi \left[\frac{1}{k_{i}} \right] \phi \left[\frac{2k_{i}}{1 + k_{i}} \right] \int_{X_{i}}^{X_{i+1}} g(x,\theta) dx$$

$$\frac{\sum_{i=1}^{n} \phi \left[\frac{2}{1+k_{i}} \right] \cdot \frac{k_{i}}{n+1} \quad \text{or} \quad \sum_{i=0}^{n} \phi \left[\frac{2k_{i}}{1+k_{i}} \right] \cdot \frac{k_{i}}{n+1}}{n+1}$$

$$\frac{1}{n+1} \sum_{i=1}^{n} k_{i} \phi \left[\frac{2}{k_{i}+1} \right] \quad \text{or} \quad \frac{1}{n+1} \phi \sum_{i=1}^{n} \left[\frac{2k_{i}}{k_{i}+1} \right] \quad \dots (14)$$

$$F(\theta) = \sum_{i=1}^{n} \phi \left[\frac{2}{1+k_{i}} \right] k_{i}$$

$$\frac{dF}{d\theta} = \sum_{i=1}^{n} \left[\phi \left(\frac{2}{k_{i}+1} \right) - \phi' \left(\frac{2}{k_{i}+1} \right) \frac{2k_{i}}{(k_{i}+1)^{2}} \right]$$

$$= \sum_{i=1}^{n} \left[\phi \left(\frac{2}{k_{i}+1} \right) - \phi' \left(\frac{2}{k_{i}+1} \right) \frac{2k_{i}}{(k_{i}+1)^{2}} \right]$$

$$= \sum_{i=1}^{n} \left[\phi \left(\frac{2}{k_{i}+1} \right) - \phi' \left(\frac{2}{k_{i}+1} \right) \frac{2k_{i}}{(k_{i}+1)^{2}} \right]$$

$$\left[\int_{x_{i}}^{x_{i}} \frac{\partial g}{\partial \theta} dx \right]$$

$$\frac{1}{n+1} \frac{d^{2}F}{d\theta^{2}} = \sum_{i=1}^{n} \left[\phi' \left(\frac{2}{k_{i}+1} \right) \left(\frac{-2}{k_{i}+1} \right) \frac{dk_{i}}{(k_{i}+1)^{2}} \right]$$

$$\frac{2k_{i}}{(k_{i}+1)^{2}} \frac{dk_{i}}{d\theta} - \phi' \left(\frac{2}{k_{i}+1} \right) \frac{-4k_{i}}{(k_{i}+1)^{3}} \frac{dk_{i}}{d\theta}$$

$$-\phi' \left(\frac{2}{k_{i}+1} \right) \frac{-2}{(k_{i}+1)^{2}} \frac{dk_{i}}{d\theta} \cdot \frac{2k_{i}}{(k_{i}+1)^{2}} \right]$$

$$\left[\int_{x_{i}}^{x_{i}} \frac{\partial g}{\partial \theta} dx \right] + \sum_{i=1}^{n} \left[\phi \left(\frac{2}{k_{i}+1} \right) - \phi' \left(\frac{2}{k_{i}+1} \right) \frac{2k_{i}}{(k_{i}+1)^{2}} \right]$$

$$\frac{1}{k_{i}+1} \frac{d^{2}F}{d\theta^{2}} = \sum_{i=1}^{n} \left[-\phi' \left(\frac{2}{k_{i}+1} \right) \cdot \frac{2}{(k_{i}+1)^{3}} - 2\phi' \left(\frac{2}{k_{i}+1} \right) + \frac{4k_{i}}{(k_{i}+1)^{3}}$$

$$\frac{1}{(k_{i}+1)^{2}} + \frac{4k_{i}}{(k_{i}+1)^{3}} \phi' \left(\frac{2}{k_{i}+1} \right) + \frac{4k_{i}}{(k_{i}+1)^{3}}$$

$$\phi'' \left(\frac{2}{k_{i}+1} \right) \frac{k_{i}}{(k_{i}+1)^{4}} \left[\int_{x_{i}}^{x_{i+1}} \frac{\partial g}{\partial \theta} dx \right] (n+1) + \frac{4k_{i}}{(k_{i}+1)^{3}}$$

$$\sum_{i=1}^{n} \phi\left(\frac{2}{k_i+1}\right) - \phi'\left(\frac{2}{k_i+1}\right) \frac{2k_i}{\left(k_i+1\right)^2}$$

$$\begin{bmatrix} \int_{X_i}^{X_{i+1}} \frac{\partial^2 g}{\partial \theta^2} dx \end{bmatrix} \qquad \dots (15)$$

Now when $\phi(.)$ is convex, $\phi''(k_i) > 0$, and the first expression on the RHS > 0 again $g(x, \theta)$ is a concave function of θ , therefore the second term will be > 0 as well. If $\phi'(k_i) < 0$, so that is if $\phi'(.)$ is a descending function at k_i , $F(\theta)$, will be a convex function of θ and its minimum will be its inclusive minimum.

Now Let

$$G(\theta) = \sum_{i=0}^{n} \phi \left(\frac{2k_{i}}{k_{i}+1} \right)$$

$$G'(\theta) = \sum_{i=1}^{n} \phi' \left(\frac{2k_{i}}{k_{i}+1} \right) \frac{2[k_{i}+1-k_{i}]}{(k_{i}+1)^{2}} \frac{dk_{i}}{d\theta}$$

$$\frac{G'(\theta)}{n+1} = \sum_{i=1}^{n} \phi' \left(\frac{2k_{i}}{k_{i}+1} \right) \frac{2}{(k_{i}+1)^{2}} \int_{X_{i}}^{X_{i+1}} \frac{\partial g}{\partial \theta} dx$$

$$\frac{G'(\theta)}{n+1} = \sum_{i=1}^{n} \left[\phi' \left(\frac{4k_{i}}{k_{i}+1} \right) \frac{4}{(k_{i}+1)^{2}} - \frac{4}{(k_{i}+1)^{3}} \phi' \right]$$

$$\left(\frac{2k_{i}}{k_{i}+1} \right) \left[\int_{X_{i}}^{X_{i+1}} \frac{\partial g}{\partial \theta} dx \right]^{2} + \sum_{i=1}^{n} \frac{2k_{i}}{(k_{i}+1)^{2}}$$

$$\phi' \left(\frac{2k_{i}}{k_{i}+1} \right) \int_{X_{i}}^{X_{i+1}} \frac{\partial^{2} g}{\partial \theta^{2}} dx \qquad \dots (16)$$

HAVRADA AND CHARVAT MEASURES OF CROSS ENTROPY

These measures are defined by either

$$\frac{\int f(x,\theta) \left[\left(\frac{2f(x,\theta)}{f(x,\theta) + g(x,\theta)} \right)^{\alpha - 1} - 1 \right] dx}{\alpha(\alpha - 1)}$$
or
$$\frac{\int g(x,\theta) \left[\left(\frac{2g(x,\theta)}{f(x,\theta) + g(x,\theta)} \right)^{\alpha - 1} - 1 \right] dx}{\alpha(\alpha - 1)} \qquad \dots (17)$$

If $\alpha \to 1$, these gives Kullback-Leibler measures

$$\lim_{\alpha \to 1} \frac{\int f(x,\theta) \left[\frac{2f(x,\theta)}{f(x,\theta) + g(x,\theta)} \right]^{\alpha - 1} \log \left(\frac{2f(x,\theta)}{f(x,\theta) + g(x,\theta)} \right)_{\text{OT}}}{\alpha + \alpha - 1}$$

$$\lim_{\alpha \to 1} \frac{\int g(x,\theta) \left[\frac{2g(x,\theta)}{f(x,\theta) + g(x,\theta)} \right]^{\alpha - 1} \log \left(\frac{2g(x,\theta)}{f(x,\theta) + g(x,\theta)} \right) dx}{\alpha + \alpha - 1}$$

$$\int f(x,\theta) \log \left[\frac{2f(x,\theta)}{f(x,\theta) + g(x,\theta)} \right] dx$$
or
$$\int g(x,\theta) \log \left[\frac{2g(x,\theta)}{f(x,\theta) + g(x,\theta)} \right] dx \qquad ...(18)$$

$$\lim_{\alpha \to 1} \frac{\sum_{i=1}^{n} \sum_{X_{i}}^{X_{i+1}} \frac{g(x,\theta)}{k_{i}} \left[\left(\frac{2}{k_{i}+1} \right)^{\alpha - 1} - 1 \right] dx}{\alpha(\alpha - 1)}$$
or
$$\lim_{\alpha \to 1} \frac{\sum_{i=1}^{n} \sum_{X_{i}}^{X_{i+1}} \frac{g(x,\theta)}{k_{i}} \left[\left(\frac{2k_{i}}{k_{i}+1} \right)^{\alpha - 1} - 1 \right] dx}{\alpha(\alpha - 1)}$$

$$\lim_{\alpha \to 1} \frac{\sum_{i=1}^{n} \sum_{X_{i}}^{X_{i+1}} \frac{g(x,\theta)}{k_{i}} \left(\frac{2}{k_{i}+1} \right)^{\alpha - 1} \log \left(\frac{2}{k_{i}+1} \right) dx}{\alpha + \alpha - 1}$$
or
$$\lim_{\alpha \to 1} \frac{\sum_{i=1}^{n} \sum_{X_{i}}^{X_{i+1}} \frac{g(x,\theta)}{k_{i}} \left(\frac{2k_{i}}{k_{i}+1} \right)^{\alpha - 1} \log \left(\frac{2k_{i}}{k_{i}+1} \right) dx}{\alpha + (\alpha - 1)}$$

$$\sum_{i=1}^{n} \sum_{X_{i}}^{X_{i+1}} \frac{g(x,\theta)}{k_{i}} \log \left(\frac{2}{k_{i}+1} \right) dx$$

or
$$\sum_{i=1}^{n} \int_{X_{i}}^{X_{i+1}} \frac{g(x,\theta)}{k_{i}} \log \left(\frac{2k_{i}}{k_{i}+1}\right) dx \qquad \dots (19)$$

In the general case

$$\sum_{i=1}^{n} \frac{1}{(n+1)} \log \frac{2}{k_i + 1} \quad \text{or} \quad \sum_{i=1}^{n} \frac{k_i}{(n+1)} \log \frac{2k_i}{k_i + 1}$$

$$\frac{1}{(n+1)} \sum_{i=1}^{n} \log \frac{2}{k_i + 1} \quad \text{or} \quad \frac{k_i}{(n+1)} \sum_{i=1}^{n} \log \frac{2k_i}{k_i + 1}$$

$$\sum_{i=1}^{n} \int_{X_i}^{X_{i+1}} \frac{g(x,\theta)}{k_i} \left[\left(\frac{2}{k_i + 1} \right)^{\alpha - 1} - 1 \right] dx$$

$$\alpha(\alpha - 1)$$

$$\frac{1}{(n+1)} = \int_{X_i}^{X_{i+1}} \frac{g(x,\theta)}{k_i} dx$$

We have to minimize

$$= \frac{1}{\alpha(\alpha-1)(n+1)} \sum_{i=1}^{n} \left[\left(\frac{2}{k_i + 1} \right)^{\alpha-1} - 1 \right]$$

More General Case

$$P(\theta) = \frac{1}{\alpha(\alpha - 1)(n + 1)} \sum_{i=0}^{n} \left[\left(\frac{2}{k_i + 1} \right)^{\alpha - 1} - 1 \right]$$

$$\frac{dP}{d\theta} = \frac{1}{\alpha(n + 1)} \sum_{i=0}^{n} \left(\frac{2}{k_i + 1} \right)^{\alpha - 2} \frac{-2}{(k_i + 1)^2} \frac{dk_i}{d\theta}$$

$$= \frac{1}{\alpha(n + 1)} \sum_{i=0}^{n} 2^{\alpha - 1} (k_i + 1)^{-\alpha} (n + 1) \int_{X_i}^{X_{i+1}} \frac{\partial g}{\partial \theta} dx$$

$$= \frac{-(2)^{\alpha - 1}}{\alpha} \sum_{i=0}^{n} (k_i + 1)^{-\alpha} \int_{X_i}^{X_{i+1}} \frac{\partial g}{\partial \theta} dx$$

$$\frac{d^2 P}{d\theta^2} = 2^{\alpha - 1} \sum_{i=0}^{n} (k_i + 1)^{-\alpha - 1} \int_{X_i}^{X_{i+1}} \left[\frac{\partial g}{\partial \theta} dx \right]^2$$

$$-\frac{2^{\alpha - 1}}{\alpha} \sum_{i=0}^{n} (k_i + 1)^{-\alpha} \int_{X_i}^{X_{i+1}} \frac{\partial^2 g}{\partial \theta^2} dx$$

$$= \frac{\sum_{i=1}^{n} \int_{X_i}^{X_{i+1}} \int_{X_i} g(x, \theta) \left[\left(\frac{2}{k_i + 1} \right)^{\alpha - 1} - 1 \right] dx}{\alpha(\alpha - 1)},$$

$$\frac{k_i}{(n+1)} = \int_{X_i}^{X_{i+1}} g(x, \theta) dx$$

We have to minimize

$$= \frac{1}{\alpha(\alpha-1)(n+1)} \sum_{i=1}^{n} \left[\left(\frac{2}{k_i+1} \right)^{\alpha-1} - 1 \right]$$

Discuss of the more General Case

$$Q(\theta) = \frac{1}{\alpha(\alpha - 1)(n+1)} \sum_{i=1}^{n} \left[\left(\frac{2}{k_i + 1} \right)^{\alpha - 1} - 1 \right]$$

$$\frac{dQ}{d\theta} = \frac{1}{\alpha(\alpha - 1)(n+1)} \left[\sum_{i=1}^{n} \left\{ \left(\frac{2}{k_i + 1} \right)^{\alpha - 1} - 1 \right\} \right]$$

$$+ \sum_{i=1}^{n} k_i \left\{ (\alpha - 1) \left(\frac{2k_i}{k_i + 1} \right)^{\alpha - 2} \frac{2}{(k_i + 1)^2} \right\} \frac{dk_i}{d\theta}$$

$$= \frac{1}{\alpha(\alpha - 1)(n+1)} \left[\sum_{i=1}^{n} \left\{ \left(\frac{2}{k_i + 1} \right)^{\alpha - 1} - 1 \right\} \right]$$

$$\begin{split} + \sum_{i=1}^{n} k_{i} (\alpha - 1) \left(\frac{2k_{i}}{k_{i} + 1} \right)^{\alpha - 2} \left(\frac{1}{(k_{i} + 1)} \right) \right] \int_{X_{i}}^{X_{i}} \frac{\partial g}{\partial \theta} dx \\ \frac{d^{2}Q}{d\theta^{2}} &= \frac{1}{\alpha(\alpha - 1)} \sum_{i=1}^{n} k_{i} \left\{ (\alpha - 1) \left(\frac{2k_{i}}{k_{i} + 1} \right)^{\alpha - 2} \frac{2}{(k_{i} + 1)^{2}} \right\} \\ &+ \sum_{i=1}^{n} \left\{ (\alpha - 1)^{2} \left(\frac{2k_{i}}{k_{i} + 1} \right)^{\alpha - 2} \frac{2}{(k_{i} + 1)^{2}} \left(\frac{1}{k_{i} + 1} \right) \right. \\ &+ (\alpha - 1) \left(\frac{2k_{i}}{k_{i} + 1} \right)^{\alpha - 1} \frac{-1}{(k_{i} + 1)^{2}} \right\} \left[\frac{dk_{i}}{d\theta} \int_{X_{i}}^{X_{i+1}} \frac{\partial g}{\partial \theta} dx \right. \\ &+ \frac{1}{\alpha(\alpha - 1)} \left\{ \sum_{i=1}^{n} \left[\left(\frac{2k_{i}}{k_{i} + 1} \right)^{\alpha - 1} - 1 \right] + (\alpha - 1) \right. \\ &\left. \sum_{i=1}^{n} \left(\frac{2k_{i}}{k_{i} + 1} \right)^{\alpha - 1} \frac{1}{(k_{i} + 1)^{2}} \right\} \int_{X_{i}}^{X_{i+1}} \frac{\partial g}{\partial \theta} dx \\ &= \frac{1}{\alpha(\alpha - 1)^{2}} \left(\frac{2k}{k_{i} + 1} \right)^{\alpha - 2} \frac{2}{(k_{i} + 1)^{3}} - \frac{(\alpha - 1)}{(k_{i} + 1)^{2}} \\ &\left. \left(\frac{2k_{i}}{(k_{i} + 1)^{3}} \right)^{\alpha - 1} \right] (n + 1) \left(\int_{X_{i}}^{X_{i+1}} \frac{\partial g}{\partial \theta} dx \right)^{2} + \frac{1}{\alpha(\alpha - 1)} \\ &\left. \left\{ \sum_{i=1}^{n} \left(\frac{2k_{i}}{k_{i} + 1} \right)^{\alpha - 1} - 1 \right\} + (\alpha - 1) \sum_{i=1}^{n} \left(\frac{2k_{i}}{k_{i} + 1} \right)^{\alpha - 1} \\ &\left. \frac{1}{(k_{i} + 1)^{3}} \right\} \int_{Y_{i}}^{X_{i+1}} \frac{\partial^{2} g}{\partial \theta^{2}} dx \end{split}$$

CONCLUSION

(*i*) In the first stage of application of Lind and Solana's principle of least information, we get results (5) and (6), for all Csiszer's measure of cross-entropy, whether we take cross-entropy, of $f(x, \theta)$ from $g(x, \theta)$ or of $g(x, \theta)$ from $f(x, \theta)$ or we use the symmetric measure,

$$\int \left[f(x,\theta) \phi \left(\frac{2g(x,\theta)}{f(x,\theta) + g(x,\theta)} \right) + g(x,\theta) \phi \left(\frac{2f(x,\theta)}{g(x,\theta) + f(x,\theta)} \right) \right] dx \quad \dots (20)$$

(ii) In the second stage, the estimate of θ will depend on the measure of cross-entropy used and whether

we take cross-entropy of $f(x, \theta)$ from $g(x, \theta)$ or of $g(x, \theta)$ from $f(x, \theta)$ or we use the symmetric measure (20).

- (iii) In fact, in the second stage, some measures may lead to concave functions of θ for minimization or convex function of θ for maximization, and thus a great deal of care will have to be used in finding the global minimum or maximum.
- (iv) Havrda and Charvat's measure [3]

$$\frac{\int g(x,\theta) \left[\left(\frac{2g(x,\theta)}{f(x,\theta) + g(x,\theta)} \right)^{\alpha-1} - 1 \right] dx}{\alpha(\alpha-1)} \qquad \dots(21)$$

will give a convex function of θ when $\alpha < 1$ and so this measure can be conveniently used when $\alpha < 1$. Similarly,

$$\frac{\int f(x,\theta) \left[\left(\frac{2f(x,\theta)}{f(x,\theta) + g(x,\theta)} \right)^{\alpha-1} - 1 \right] dx}{\alpha (\alpha-1)}$$

can be used when $\alpha > 0$...(22)

- (v) The approximation that match up to the value of (21) will correspond to the value of i-d for (22).
- (vi) Hence, we receive an extensive range of approximations but the problem is of choosing the right one. The principles of monotonocity & invariance have been recommended by Lind & Solana for the above reason that can be used effectively to find whether our preference is limited by these otherwise; the choice is left to the users or decided by deliberations of computational expediency.

- (vii) The theory of least information moves about neutrally in the approximation of arbitrary variables from data.
- (viii) The MPS (Maximum Product of Spacings) was given by chang and Amin (2) intending to enlarge the geometric mean of spacings. Apart from this, Renneby (18) also observed that a good conjecture method should lesson the gap between the true distribution & the model with respect to a relevant metric. These give us quite alike but marked by different rationals for approximation from the one provided by PLI.
 - (*ix*) A few other papers that discuss the PLI are (6, 11, 12, 13, 14, 15, 16, 17).

REFERENCES

- [1] R.A. Fisher, "On the Mathematical Foundation of Theoretical Statistics", *Phil. Trans. Roy Soc.* Vol. 222(A), pp. 309-368(1921).
- [2] S. Kullback and R.A. Leibler, "On information and Sufficiency", *Ann Math. Stat.*, vol 22, pp. 79-86(1951).
- [3] Havrda, J. And charvat, F. Quantification method of classification processes, concept of structural -entropy, Kyberneika (1967).
- [4] I. Csiszer, "A class of measure of informativity of observation channels", *Periodica Math. Hundagrika* 2: 191-213(1972).
- [5] N.C. Lind and V. Solana, "Cross-entropy estimation of random variables with fractile constraints, Paper No.11, Institute for Risk Research, University of Waterloo (1988).
- [6] Lin J. Divergence measures based on the Shannon entropy. IEEE Trans. Information Theory 145-150(1991).
- [7] J.N. Kapoor, Measures of information and their applications (wiley Eastern limited new Age International limited, New Delhi (1994).
- [8] Gurdial and Specialski. A note on a family of Generalized divergence measures Bull Cal. Math. Soc. 87: 371-374(1996).