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ABSTRACT : Lind and Solana’s principle of minimum information are discussed. New generalized Lin’s cross
entropies are introduced and its application of Lin’s principle of minimum information are examined.
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INTRODUCTION
Let g(x, 0) be a known Probability density function of
continuous random variate defined over the interal [X,
X, . 1. However, the parameter 0 is known and to estimate
it. We draw a random sample X X,,....,X, from the
population and rearrange its members, so that

X< X < X< ... <X <X, <X, <X, (1)
The usual method for estimation of 6 is based on [1]

principle of maximum likehood according to which estimate
0 by maximizing likehood function;

L0 g(x, 0)g(x,, 0)........ glx,, 9) (2

Recenly, [5] have suggested a two-stage method of

estimating 6. In the first stage we assume 8 to be known
and choose a function f{x, 8) which satisfies

for, O = L

n+l
So that the probability in each of the (» + 1) intervals
defined by the n sample points are 1/(n + 1) each and which

is such that

i=0,1,2,....n -03)

f(x,8)

fx, ©) In 2(x.0) dx .(4)
is minimum i.e., cut of all the density functions satisfying
constraints (3) we choose that function which is ‘closest’
to given g(x, 8) in the sencse that it minimizes [2] measure
of cross-entropy of f{x, 0) from g(x, ). Thus, first stage
determines f(x, 8) for any given 6. The object of the IInd
stage is to choose O to minimize (4) for the function flx, 8)
determined by the first stage.

The first stage gives,

8(x.0)

i

fir, 0= =2 X <X <X, .05

X;H

Where, k= (n+ 1) J'g(x, 0)dx,i=0,1,2, ..., n.(6)
b

the second stage gives that we chose 8 to minimize

X,
n X 1 R
Z J- g(x,e)’ log —dx = — —z log ki (7
i=0 x k n+1 =0

k.

i 1

Minimum Information, cross-entropy, Maximum Like hood, Csiszer’s measure.

In other words, we chose 8 by minimizing
n X,H
Zlog J'g(x, 0) dx .(8)
i=0 X,

[7] This can be compared with the principle of maximum
likehood which suggests that we chose 0 to minimize

ilog g(x, 8) dx .(9)
=

[6] introduce a new directed divergence, which
overcomes the difficulty of absolute continuity. This new
divergence measure denoted by k(P, Q) between two
probability distributions P and Q is defined as

p(x)
1/2P(x) +1/20(x)

kP, 0) = X%X P(x)log

[8] introduced a new general class of diveragence
measures as

p(x)

M(P, O, a) =P(x) log —[ P )+bQ(x)]

O0<ag,b<landa +b=1

CSISER’S CLASS OF MEASURE OF CROSS-
NTROPY
[4] gave the classes of measures of cross-entropy,

0f (x,0)0 B0,
He(x. ) Hrx.o
Where @(.) is twice-differentiable convex function for
which @(1)=0
For different function @(.), (10) can represent a variety
of measures of cross-entropy. Using these for the first stage,
we get

jg(x 0)@———dx and If(x 0)oF——

f(x 9)
g(x 8 ~ = Const.
Dg(x 00 g(x.6) Dg(x 6)0
or Df( 6)% 1, B) 0 = Const. (1)

Hr .o
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Now we define the classes of measures of new cross-
entropy

0 2/(x,6) O

Hr .0 +g(x.0H &

2¢(x,0) O 5
B2 (x.0) + / (x, O)F
2[f(x,0) +g(x,0) — f(x, )]
[/ (x,0) +g(x,0)]
0 2f(x,0) O

Hr (x.6) +g(x, 05 ~ Const:

O 2/x0 0O 2[gx0)
and @Hy(x,0) +g(x. O [/(x,6) + g (x, O

jg(x, 0)e

and J'f(x )(p .(12)

g(x, 0)

'D 2f(x,0) O Const 2£(x,0)+g(x,0)
O oL . o= —
P8+ O ™ T [(x.0)+g(x. 0

= Const. -(13)
Whatever be the function 6(.), this gives (5) and (6) so

that the first stage gives the same result for all csiszer’s
measure of cross-entropy. For the second stage we have to
choose 0 to minimize

n Xin

0 2/(x8)
DG — ]
2 [ €O g g0

n Xin

2g(x,6)
or ;)If(x )‘pD( 0+ /(x, e)m

o O
-« 0 5, O

X,
8
)Ig(x, )@ 201
f(x.0)F

0 0
n Xl*l D D
Z )l f(x, 6)(pE-IWDdx

g(x,0)H

M:

1l
-

i

02 DL 2 02k DL
;(p5+kl-|:||]n+l or ZZ‘pBwEnﬂ
1 & g2 0d " 02k,

1 ;kicp%% pve Z ?D -(14)

02 O
F(0)= ;(PH—D+ B Dkz-

» 00 2 Odk, dk, 2 0
dF ar;
i ;%pd(lﬂmdﬁ de(%(k 1P
2k
(k+1)° B
ngpgz E qg 2 0 2k Udk
N ;DEVQ”D Dk,‘fg(kﬁl)zﬂde
0020 D20 2 O
L4 Sy a0 @ Ay
n+l1 do SO0k tlo ok tOG+D)°g
K O
DIa—gde
Hr, % H
n _ O J
| dF E ) 2 dk;
£2° .Y Wo— Dﬁiﬁf m—g
n+l d6? ;E O 100k +1)
2k, dk;, O 2 0O 4k dk
(k; +1)* d8 " [ +10(k, +1)° d©

cp”% 2 D -2 dk, 2k, E
dq+1m(k +1) d8 (k, +1)’ g

2
ﬂfl k+1

+ [\

(pﬁk +H

020 4k,

1

v HI(I. +15 ¥ (ki +1)3

1 Ak,
+

(k+1)" (k +1)°

020 & W“a

q’)m B}J{-ae H(I’l+l)+
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" 020 20 2k

205 +B" "E“a (o +1)

a2 O
a—de

!

Now when @(.) is convex, @"(k) > 0, and the first

expression on the RHS > 0 again g(x, 0) is a concave

function of 6, therefore the second term will be > 0 as well.

If @'(k;) <0, so that is if @() is a descending function at k,,

F(0), will be a convex function of 0 and its minimum will be
its inclusive minimum.

Now Let
n 02k O
G®) = ,ZOCPEVC_HD

, 02k Dotk +1- k) dy
c®= Zl ok +10 (K, +1)°

do
X
¢@ & D20 2 g
_ d.
o~ 2%8cniBe e |
, 0 04k O 4 4
G(O) _ ZEP'D 1 D 2_ 3 7
n+l S8 Ok t10k +)° (& +1)
02k 0 o
52k D:(n+1)DJ' 9 10 +y 2k;
Ok +15 % (k +1)°
D2k
I—g .(16)
1 X 06

HAVRADA AND CHARVAT MEASURES OF
CROSS ENTROPY

These measures are defined by either

2f(v,0) O O
/o0 Grcorawod 5"

a@ -1
-1 I:l
fa8) [ A e() G)EG - ds
X, X,
or £ - H -(17)
a(a-1)
If a - 1, these gives Kullback-Leibler measures
21(x,0) 21 (x,0)

[/t )E?( 0)+g(r.0) eH

a+a-1

lim Df(x 0) +g(x, @] or
a-1

2g(x,0) - D

I“L)ERJ6TQ§EH

2g(x,0)

O

B (10) + g(x. 0]

lim

a-1 a+a-1

0 2f(x,0) O
J7 O3 e s et O

O 2g(x06) O
N U

In the general case

2k

zl(nﬂ) k,-+ z( ) %%+
1 u 2 )
l - 1
i A T G2
n X |j]_1 O
Z J’ g(x.9) 2 0O —10dx
=1 X, kz' i+1|:| H
a@-1)
X,
L (s
wy ~ Tk

.(18)

.(19)
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More General Case
o, ! O
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n Xin -1 O
S [ fetx 2 Ea 10
i=1 X, i 1|:| E
a a(a-1) ’
K o (x,0)d
oy = [ s

We have to minimize

1

n -1 O
- z%ﬁ i
a@—(n+1) G H¥ +10 H

Discuss of the more General Case
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CONCLUSION

(7) In the first stage of application of Lind and Solana’s
principle of least information, we get results (5) and
(6), for all Csiszer’s measure of cross-entropy, whether
we take cross-entropy, of flx, 8) from g(x, 6) or of
g(x, 8) from f{x, 8) or we use the symmetric measure,

2g (x,e) 0
(x.6)+2(x.0)

re(x.6) (pD 2f(x,0) X

E (x.6)+/ (x, e)%dx .(20)

(i1) In the second stage, the estimate of 6 will depend
on the measure of cross-entropy used and whether

J'éf(x,e) (pD
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(iii)

(@)

)
(vi)
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we take cross-entropy of fix, 0) from g(x, 6) or of
g(x, 0) from f(x, B) or we use the symmetric measure
(20).

In fact, in the second stage, some measures may
lead to concave functions of 0 for minimization or
convex function of 6 for maximization, and thus a
great deal of care will have to be used in finding
the global minimum or maximum.

Havrda and Charvat’s measure [3]

H .21

will give a convex function of 8 when a < 1 and so
this measure can be conveniently used when o < 1.
Similarly,

J'f(x,@)

o (a-1)

can be used when a > 0 (22)

The approximation that match up to the value of
(21) will correspond to the value of i-d for (22).

Hence, we receive an extensive range of
approximations but the problem is of choosing the
right one. The principles of monotonocity &
invariance have been recommended by Lind &
Solana for the above reason that can be used
effectively to find whether our preference is limited
by these otherwise; the choice is left to the users
or decided by deliberations of computational
expediency.

(vii)

(viii)

The theory of least information moves about
neutrally in the approximation of arbitrary variables
from data.

The MPS (Maximum Product of Spacings) was given
by chang and Amin (2) intending to enlarge the
geometric mean of spacings. Apart from this,
Renneby (18) also observed that a good conjecture
method should lesson the gap between the true
distribution & the model with respect to a relevant
metric. These give us quite alike but marked by
different rationals for approximation from the one
provided by PLIL

(ix) A few other papers that discuss the PLI are (6, 11,
12, 13, 14, 15, 16, 17).
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