

Some results on fixed point theorem in Dislocated Quasi Metric Spaces

Manvi Kohli, Rajesh Shrivastava and Manoj Sharma*

Govt. Science and Commerce Benazir College, Bhopal (MP) INDIA *Sagar Inst. of Research and Tech., Bhopal (MP) INDIA

(Received 25 Nov., 2009, Accepted 10 Dec., 2009)

ABSTRACT : In this paper we have proved fixed point theorem for continuous contraction mappings in dislocated Quasi Metric Spaces. Aslo we obtain a common fixed point theorem for a pair of mappings in Dislocated Metric Spaces.

Keywords : Dislocated quasi matrices fixed point.

INTRODUCTION

Banach [1992] proved Fixed Point Theorem for Contraction Mappings in Complete Matrix Space. It is well known as a Banach Fixed Point Theorem. Dass and Gupta [1] generalized Banach's Contraction Principle in Metric Space. Also Rhoads [1977] introduced a partial ordering for various Definitions Contractive Mappings. This objective of the note is to prove some fixed point theorem for continuous contraction mapping defined by Dass and Gupta [1] and Rhoades [4] in Dislocated Quasi Metric Spaces.

PRELIMINARIES

Definition 1 [3] : Let X be a nonempty set and let d: $X \times X \rightarrow [0, \infty]$ be a function satisfying following conditions.

(*i*) d(x, y) = d(y, x) = 0 implies y = x

(*ii*) $d(x, y) < d(x, z) + d(z, y) \ \forall x, y, z \in X$

Then d is called Dislocated Quasi Metric Space on X. If d satisfies d(x, y) = d(y, x) then it is called dislocated metric space.

Definition 2 [3] : A Sequence $[X_n]$ is dq Metric Space (Dislocated Quasi Metric Spaces) (X, d) is called Cauchy Sequence if for given $\varepsilon > 0$, $\exists a \ n_0 \in N$ such that $\forall m, n > n_0$

 $\Rightarrow d(x_m, x_n) < \varepsilon \text{ or } d(x_n, x_m) < \varepsilon$

i.e., min $\{d(x_m, x_n), d(x_n, x_m)\} < \varepsilon$

Definition 3 [3] : A Sequence $[X_n]$ dislocated Quasi Convergence to x if

 $1t \ n \to \infty \ d(x_n, x) = 1t \ n \to \infty \ d(x, x_n) = 0$

In this case x is called a dq limit of $[x_n]$ we write $x_n \rightarrow x$.

Definition 4 [3] : A dq Metric Space (X, d) is called complete if every Cauchy Sequence in it is a dq convergent.

Definition 5 [3] : Let (X, d) and (Y, d) be dq Metric Spaces and Let $f : X \to Y$ be a function. Then f is continuous to $x_0 \in X$, if for each sequence $[x_n]$ which is $d_1 - q$ convergent to x_0 in X, the sequence $[f(x_n)]$ is $d_2 - q$ convergent to $f(x_0)$ in Y.

Definition 6 [3] : Let (X, d) be a dq Metric Space. A map $T : X \to X$ is called contraction if there exists 0 < x < 1 such that

$$d(Tx, Ty) < \lambda \ d(x, y) \forall x, y \in X$$

Theorem 1 : Let (X, d) be a dq Metric and let $T : X \rightarrow X$ be continuous contracting mapping. Then T has a unique fixed point.

MAIN RESULT

Theorem 1 : Let (X, d) be a dq Metric Space and let T : $X \rightarrow X$ be continuous mapping satisfying the following condition.

$$d(Tx, Ty) < \alpha \frac{d(y, Ty)[1 + d(x, Tx)]}{1 + d(x, y)} + \beta d(x, y) + \gamma d(y, Ty)$$
$$\forall x, y \in X, \alpha > 0, \beta > 0, r > 0 \alpha + \beta + \gamma < 1$$

Then T has a unique fixed point.

Proof: Let $[X_n]$ be a sequence in X defined as follows. Let $x_0 \in X$, $T(x_0) = x_1$, $T(x_1) = x_2$, $T(x_3) = x_4 \dots T(x_n) = x_{n+1}$. Consider,

$$d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n)$$

$$< \alpha \frac{d(x_n, Tx_n)[1 + d(x_{n-1}, Tx_{n-1})]}{[1 + d(x_{n-1}, x_n)]}$$

$$+ \beta d(x_{n-1}, x_n) + \gamma d(x_n, Tx_n) \qquad \dots(i)$$

+ $\beta d(x_{n-1}, x_n) + \gamma d(x_n, x_{n+1})$

$$d(x_n, x_{n+1}) < \alpha \frac{d(x_n, x_{n+1})[1 + d(x_{n-1}, x_n)]}{[1 + d(x_{n-1}, x_n)]}$$

Therefore

$$d(x_n, x_{n+1}) - \alpha d(x_n, x_{n+1}) - \gamma d(x_n, x_{n+1}) < \beta d(x_{n-1}, x_n)$$

$$\Rightarrow (1 - \alpha - \gamma) \ d(x_n, x_{n+1}) < \beta \ d(x_{n-1}, x_n)$$

$$\Rightarrow d(x_n, x_{n+1}) < \frac{\beta}{1 - \alpha - \gamma} \ d(x_{n-1}, x_n)$$

Let $\delta = \frac{\beta}{1 - \alpha - \gamma}$ with $0 < \delta < 1$

Then $d(x_n, x_{n+1}) < \delta d(x_{n-1}, x_n)$ On further decomposing we get

$$d(x_{n-1}, x_n) < \delta \ d(x_{n-2}, x_{n-1})$$

and finally we can write

 $d(x_n, x_{n+1}) < \delta^2 d(x_{n-2}, x_{n-1}).$ On continuing this process n times

 $d(x_n, x_{n+1}) < \delta^2 d(x_0, x_1)$ Since $0 < \delta < 1$ and $n \to \infty$, $\delta^n \to 0$.

Hece $[X_n]$ is a dq sequence in the complete dislocated Quasi Metric Space X.

Thus $[X_n]$ dislocated Quasi sequence converges to come t_0 . Since T is continuous we have

 $T(t_0) = 1t_{n \to \infty} T(X_n) = 1t_{n \to \infty} x_{n+1} = t_0$ $T(t_0) = t_0$ Thus

Thus T has a fixed point.

Uniqueness

Let x be a fixed point of T. Then by given condition we have

 $d(x, x) = d(Tx, x) < (\alpha + \beta + \gamma) d(x, x)$

Which gives d(x, x) = 0, Since $0 < (\alpha + \beta + \gamma) < 1$ and d(x, x) > 0.

Thus d(x, Tx) = if x is a fixed point of T.

Let $x, y \in X$ be fixed points of T, *i.e.*, is Tx = x; Ty = y.

Then by condition 3.1 $d(x, y) = d(Tx, Ty) < \beta d(x, y)$ which gives d(x, y) > 0, Since $0 < \beta < 1$ and d(x, y) = 0.

Similarly d(y, x) = 0 and hence x = y. Thus fixed point of T is unique.

REFERENCES

- [1] B.K. Dass, S. Gupta, An extension of Banach Contraction principles through rational expression, Indian Journal of Pure and Applied Mathematics, 6: 1455-1458(1975).
- [2] C.T. Aage, J.N. Salunkhe, The results on Fixed points in dislocated quasi Metric space, Applied Mathematical Science. 2(59): 2941-2948(2008).
- [3] F.M. Zeyada, G.H. Hassan, M.A. Ahmed, A generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasi metric spaces. The Arabian Jouranl for Science and Engineering, **31**(1A): 111-14(2005).
- [4] B.E. Rohades, A comparision of various definition dof contractive mappings, Transfer, Amer. Soc. 226: 257-290(1977).