PNG  IHDRQgAMA a cHRMz&u0`:pQ<bKGDgmIDATxwUﹻ& ^CX(J I@ "% (** BX +*i"]j(IH{~R)[~>h{}gy)I$Ij .I$I$ʊy@}x.: $I$Ii}VZPC)I$IF ^0ʐJ$I$Q^}{"r=OzI$gRZeC.IOvH eKX $IMpxsk.쒷/&r[޳<v| .I~)@$updYRa$I |M.e JaֶpSYR6j>h%IRز if&uJ)M$I vLi=H;7UJ,],X$I1AҒJ$ XY XzI@GNҥRT)E@;]K*Mw;#5_wOn~\ DC&$(A5 RRFkvIR}l!RytRl;~^ǷJj اy뷦BZJr&ӥ8Pjw~vnv X^(I;4R=P[3]J,]ȏ~:3?[ a&e)`e*P[4]T=Cq6R[ ~ޤrXR Հg(t_HZ-Hg M$ãmL5R uk*`%C-E6/%[t X.{8P9Z.vkXŐKjgKZHg(aK9ڦmKjѺm_ \#$5,)-  61eJ,5m| r'= &ڡd%-]J on Xm|{ RҞe $eڧY XYrԮ-a7RK6h>n$5AVڴi*ֆK)mѦtmr1p| q:흺,)Oi*ֺK)ܬ֦K-5r3>0ԔHjJئEZj,%re~/z%jVMڸmrt)3]J,T K֦OvԒgii*bKiNO~%PW0=dii2tJ9Jݕ{7"I P9JKTbu,%r"6RKU}Ij2HKZXJ,妝 XYrP ެ24c%i^IK|.H,%rb:XRl1X4Pe/`x&P8Pj28Mzsx2r\zRPz4J}yP[g=L) .Q[6RjWgp FIH*-`IMRaK9TXcq*I y[jE>cw%gLRԕiFCj-ďa`#e~I j,%r,)?[gp FI˨mnWX#>mʔ XA DZf9,nKҲzIZXJ,L#kiPz4JZF,I,`61%2s $,VOϚ2/UFJfy7K> X+6 STXIeJILzMfKm LRaK9%|4p9LwJI!`NsiazĔ)%- XMq>pk$-$Q2x#N ؎-QR}ᶦHZډ)J,l#i@yn3LN`;nڔ XuX5pF)m|^0(>BHF9(cզEerJI rg7 4I@z0\JIi䵙RR0s;$s6eJ,`n 䂦0a)S)A 1eJ,堌#635RIgpNHuTH_SԕqVe ` &S)>p;S$魁eKIuX`I4춒o}`m$1":PI<[v9^\pTJjriRŭ P{#{R2,`)e-`mgj~1ϣLKam7&U\j/3mJ,`F;M'䱀 .KR#)yhTq;pcK9(q!w?uRR,n.yw*UXj#\]ɱ(qv2=RqfB#iJmmL<]Y͙#$5 uTU7ӦXR+q,`I}qL'`6Kͷ6r,]0S$- [RKR3oiRE|nӦXR.(i:LDLTJjY%o:)6rxzҒqTJjh㞦I.$YR.ʼnGZ\ֿf:%55 I˼!6dKxm4E"mG_ s? .e*?LRfK9%q#uh$)i3ULRfK9yxm܌bj84$i1U^@Wbm4uJ,ҪA>_Ij?1v32[gLRD96oTaR׿N7%L2 NT,`)7&ƝL*꽙yp_$M2#AS,`)7$rkTA29_Iye"|/0t)$n XT2`YJ;6Jx".e<`$) PI$5V4]29SRI>~=@j]lp2`K9Jaai^" Ԋ29ORI%:XV5]JmN9]H;1UC39NI%Xe78t)a;Oi Ҙ>Xt"~G>_mn:%|~ޅ_+]$o)@ǀ{hgN;IK6G&rp)T2i୦KJuv*T=TOSV>(~D>dm,I*Ɛ:R#ۙNI%D>G.n$o;+#RR!.eU˽TRI28t)1LWϚ>IJa3oFbu&:tJ*(F7y0ZR ^p'Ii L24x| XRI%ۄ>S1]Jy[zL$adB7.eh4%%누>WETf+3IR:I3Xה)3אOۦSRO'ٺ)S}"qOr[B7ϙ.edG)^ETR"RtRݜh0}LFVӦDB^k_JDj\=LS(Iv─aTeZ%eUAM-0;~˃@i|l @S4y72>sX-vA}ϛBI!ݎߨWl*)3{'Y|iSlEڻ(5KtSI$Uv02,~ԩ~x;P4ցCrO%tyn425:KMlD ^4JRxSهF_}شJTS6uj+ﷸk$eZO%G*^V2u3EMj3k%)okI]dT)URKDS 7~m@TJR~荪fT"֛L \sM -0T KfJz+nإKr L&j()[E&I ߴ>e FW_kJR|!O:5/2跌3T-'|zX ryp0JS ~^F>-2< `*%ZFP)bSn"L :)+pʷf(pO3TMW$~>@~ū:TAIsV1}S2<%ޟM?@iT ,Eūoz%i~g|`wS(]oȤ8)$ ntu`өe`6yPl IzMI{ʣzʨ )IZ2= ld:5+請M$-ї;U>_gsY$ÁN5WzWfIZ)-yuXIfp~S*IZdt;t>KūKR|$#LcԀ+2\;kJ`]YǔM1B)UbG"IRߊ<xܾӔJ0Z='Y嵤 Leveg)$znV-º^3Ւof#0Tfk^Zs[*I꯳3{)ˬW4Ւ4 OdpbZRS|*I 55#"&-IvT&/윚Ye:i$ 9{LkuRe[I~_\ؠ%>GL$iY8 9ܕ"S`kS.IlC;Ҏ4x&>u_0JLr<J2(^$5L s=MgV ~,Iju> 7r2)^=G$1:3G< `J3~&IR% 6Tx/rIj3O< ʔ&#f_yXJiގNSz; Tx(i8%#4 ~AS+IjerIUrIj362v885+IjAhK__5X%nV%Iͳ-y|7XV2v4fzo_68"S/I-qbf; LkF)KSM$ Ms>K WNV}^`-큧32ŒVؙGdu,^^m%6~Nn&͓3ŒVZMsRpfEW%IwdǀLm[7W&bIRL@Q|)* i ImsIMmKmyV`i$G+R 0tV'!V)֏28vU7͒vHꦼtxꗞT ;S}7Mf+fIRHNZUkUx5SAJㄌ9MqμAIRi|j5)o*^'<$TwI1hEU^c_j?Е$%d`z cyf,XO IJnTgA UXRD }{H}^S,P5V2\Xx`pZ|Yk:$e ~ @nWL.j+ϝYb퇪bZ BVu)u/IJ_ 1[p.p60bC >|X91P:N\!5qUB}5a5ja `ubcVxYt1N0Zzl4]7­gKj]?4ϻ *[bg$)+À*x쳀ogO$~,5 زUS9 lq3+5mgw@np1sso Ӻ=|N6 /g(Wv7U;zωM=wk,0uTg_`_P`uz?2yI!b`kĸSo+Qx%!\οe|އԁKS-s6pu_(ֿ$i++T8=eY; צP+phxWQv*|p1. ά. XRkIQYP,drZ | B%wP|S5`~́@i޾ E;Չaw{o'Q?%iL{u D?N1BD!owPHReFZ* k_-~{E9b-~P`fE{AܶBJAFO wx6Rox5 K5=WwehS8 (JClJ~ p+Fi;ŗo+:bD#g(C"wA^ r.F8L;dzdIHUX݆ϞXg )IFqem%I4dj&ppT{'{HOx( Rk6^C٫O.)3:s(۳(Z?~ٻ89zmT"PLtw䥈5&b<8GZ-Y&K?e8,`I6e(֍xb83 `rzXj)F=l($Ij 2*(F?h(/9ik:I`m#p3MgLaKjc/U#n5S# m(^)=y=đx8ŬI[U]~SцA4p$-F i(R,7Cx;X=cI>{Km\ o(Tv2vx2qiiDJN,Ҏ!1f 5quBj1!8 rDFd(!WQl,gSkL1Bxg''՞^ǘ;pQ P(c_ IRujg(Wz bs#P­rz> k c&nB=q+ؔXn#r5)co*Ũ+G?7< |PQӣ'G`uOd>%Mctz# Ԫڞ&7CaQ~N'-P.W`Oedp03C!IZcIAMPUۀ5J<\u~+{9(FbbyAeBhOSܳ1 bÈT#ŠyDžs,`5}DC-`̞%r&ڙa87QWWp6e7 Rϫ/oY ꇅ Nܶըtc!LA T7V4Jsū I-0Pxz7QNF_iZgúWkG83 0eWr9 X]㾮݁#Jˢ C}0=3ݱtBi]_ &{{[/o[~ \q鯜00٩|cD3=4B_b RYb$óBRsf&lLX#M*C_L܄:gx)WΘsGSbuL rF$9';\4Ɍq'n[%p.Q`u hNb`eCQyQ|l_C>Lb꟟3hSb #xNxSs^ 88|Mz)}:](vbۢamŖ࿥ 0)Q7@0=?^k(*J}3ibkFn HjB׻NO z x}7p 0tfDX.lwgȔhԾŲ }6g E |LkLZteu+=q\Iv0쮑)QٵpH8/2?Σo>Jvppho~f>%bMM}\//":PTc(v9v!gոQ )UfVG+! 35{=x\2+ki,y$~A1iC6#)vC5^>+gǵ@1Hy٪7u;p psϰu/S <aʸGu'tD1ԝI<pg|6j'p:tպhX{o(7v],*}6a_ wXRk,O]Lܳ~Vo45rp"N5k;m{rZbΦ${#)`(Ŵg,;j%6j.pyYT?}-kBDc3qA`NWQū20/^AZW%NQ MI.X#P#,^Ebc&?XR tAV|Y.1!؅⨉ccww>ivl(JT~ u`ٵDm q)+Ri x/x8cyFO!/*!/&,7<.N,YDŽ&ܑQF1Bz)FPʛ?5d 6`kQձ λc؎%582Y&nD_$Je4>a?! ͨ|ȎWZSsv8 j(I&yj Jb5m?HWp=g}G3#|I,5v珿] H~R3@B[☉9Ox~oMy=J;xUVoj bUsl_35t-(ՃɼRB7U!qc+x4H_Qo֮$[GO<4`&č\GOc[.[*Af%mG/ ňM/r W/Nw~B1U3J?P&Y )`ѓZ1p]^l“W#)lWZilUQu`-m|xĐ,_ƪ|9i:_{*(3Gѧ}UoD+>m_?VPۅ15&}2|/pIOʵ> GZ9cmíتmnz)yߐbD >e}:) r|@R5qVSA10C%E_'^8cR7O;6[eKePGϦX7jb}OTGO^jn*媓7nGMC t,k31Rb (vyܴʭ!iTh8~ZYZp(qsRL ?b}cŨʊGO^!rPJO15MJ[c&~Z`"ѓޔH1C&^|Ш|rʼ,AwĴ?b5)tLU)F| &g٣O]oqSUjy(x<Ϳ3 .FSkoYg2 \_#wj{u'rQ>o;%n|F*O_L"e9umDds?.fuuQbIWz |4\0 sb;OvxOSs; G%T4gFRurj(֍ڑb uԖKDu1MK{1^ q; C=6\8FR艇!%\YÔU| 88m)֓NcLve C6z;o&X x59:q61Z(T7>C?gcļxѐ Z oo-08jہ x,`' ҔOcRlf~`jj".Nv+sM_]Zk g( UOPyεx%pUh2(@il0ݽQXxppx-NS( WO+轾 nFߢ3M<;z)FBZjciu/QoF 7R¥ ZFLF~#ȣߨ^<쩡ݛкvџ))ME>ώx4m#!-m!L;vv#~Y[đKmx9.[,UFS CVkZ +ߟrY٧IZd/ioi$%͝ب_ֶX3ܫhNU ZZgk=]=bbJS[wjU()*I =ώ:}-蹞lUj:1}MWm=̛ _ ¾,8{__m{_PVK^n3esw5ӫh#$-q=A̟> ,^I}P^J$qY~Q[ Xq9{#&T.^GVj__RKpn,b=`żY@^՝;z{paVKkQXj/)y TIc&F;FBG7wg ZZDG!x r_tƢ!}i/V=M/#nB8 XxЫ ^@CR<{䤭YCN)eKOSƟa $&g[i3.C6xrOc8TI;o hH6P&L{@q6[ Gzp^71j(l`J}]e6X☉#͕ ׈$AB1Vjh㭦IRsqFBjwQ_7Xk>y"N=MB0 ,C #o6MRc0|$)ف"1!ixY<B9mx `,tA>)5ػQ?jQ?cn>YZe Tisvh# GMމȇp:ԴVuږ8ɼH]C.5C!UV;F`mbBk LTMvPʍϤj?ԯ/Qr1NB`9s"s TYsz &9S%U԰> {<ؿSMxB|H\3@!U| k']$U+> |HHMLޢ?V9iD!-@x TIî%6Z*9X@HMW#?nN ,oe6?tQwڱ.]-y':mW0#!J82qFjH -`ѓ&M0u Uγmxϵ^-_\])@0Rt.8/?ٰCY]x}=sD3ojަЫNuS%U}ԤwHH>ڗjܷ_3gN q7[q2la*ArǓԖ+p8/RGM ]jacd(JhWko6ڎbj]i5Bj3+3!\j1UZLsLTv8HHmup<>gKMJj0@H%,W΃7R) ">c, xixј^ aܖ>H[i.UIHc U1=yW\=S*GR~)AF=`&2h`DzT󑓶J+?W+}C%P:|0H܆}-<;OC[~o.$~i}~HQ TvXΈr=b}$vizL4:ȰT|4~*!oXQR6Lk+#t/g lԁߖ[Jڶ_N$k*". xsxX7jRVbAAʯKҎU3)zSNN _'s?f)6X!%ssAkʱ>qƷb hg %n ~p1REGMHH=BJiy[<5 ǁJҖgKR*倳e~HUy)Ag,K)`Vw6bRR:qL#\rclK/$sh*$ 6덤 KԖc 3Z9=Ɣ=o>X Ώ"1 )a`SJJ6k(<c e{%kϊP+SL'TcMJWRm ŏ"w)qc ef꒵i?b7b('"2r%~HUS1\<(`1Wx9=8HY9m:X18bgD1u ~|H;K-Uep,, C1 RV.MR5άh,tWO8WC$ XRVsQS]3GJ|12 [vM :k#~tH30Rf-HYݺ-`I9%lIDTm\ S{]9gOڒMNCV\G*2JRŨ;Rҏ^ڽ̱mq1Eu?To3I)y^#jJw^Ńj^vvlB_⋌P4x>0$c>K†Aļ9s_VjTt0l#m>E-,,x,-W)سo&96RE XR.6bXw+)GAEvL)͞K4$p=Ũi_ѱOjb HY/+@θH9޼]Nԥ%n{ &zjT? Ty) s^ULlb,PiTf^<À] 62R^V7)S!nllS6~͝V}-=%* ʻ>G DnK<y&>LPy7'r=Hj 9V`[c"*^8HpcO8bnU`4JȪAƋ#1_\ XϘHPRgik(~G~0DAA_2p|J묭a2\NCr]M_0 ^T%e#vD^%xy-n}-E\3aS%yN!r_{ )sAw ڼp1pEAk~v<:`'ӭ^5 ArXOI驻T (dk)_\ PuA*BY]yB"l\ey hH*tbK)3 IKZ򹞋XjN n *n>k]X_d!ryBH ]*R 0(#'7 %es9??ښFC,ՁQPjARJ\Ρw K#jahgw;2$l*) %Xq5!U᢯6Re] |0[__64ch&_}iL8KEgҎ7 M/\`|.p,~`a=BR?xܐrQ8K XR2M8f ?`sgWS%" Ԉ 7R%$ N}?QL1|-эټwIZ%pvL3Hk>,ImgW7{E xPHx73RA @RS CC !\ȟ5IXR^ZxHл$Q[ŝ40 (>+ _C >BRt<,TrT {O/H+˟Pl6 I B)/VC<6a2~(XwV4gnXR ϱ5ǀHٻ?tw똤Eyxp{#WK qG%5],(0ӈH HZ])ג=K1j&G(FbM@)%I` XRg ʔ KZG(vP,<`[ Kn^ SJRsAʠ5xՅF`0&RbV tx:EaUE/{fi2;.IAwW8/tTxAGOoN?G}l L(n`Zv?pB8K_gI+ܗ #i?ޙ.) p$utc ~DžfՈEo3l/)I-U?aԅ^jxArA ΧX}DmZ@QLےbTXGd.^|xKHR{|ΕW_h] IJ`[G9{).y) 0X YA1]qp?p_k+J*Y@HI>^?gt.06Rn ,` ?);p pSF9ZXLBJPWjgQ|&)7! HjQt<| ؅W5 x W HIzYoVMGP Hjn`+\(dNW)F+IrS[|/a`K|ͻ0Hj{R,Q=\ (F}\WR)AgSG`IsnAR=|8$}G(vC$)s FBJ?]_u XRvύ6z ŨG[36-T9HzpW̞ú Xg큽=7CufzI$)ki^qk-) 0H*N` QZkk]/tnnsI^Gu't=7$ Z;{8^jB% IItRQS7[ϭ3 $_OQJ`7!]W"W,)Iy W AJA;KWG`IY{8k$I$^%9.^(`N|LJ%@$I}ֽp=FB*xN=gI?Q{٥4B)mw $Igc~dZ@G9K X?7)aK%݅K$IZ-`IpC U6$I\0>!9k} Xa IIS0H$I H ?1R.Чj:4~Rw@p$IrA*u}WjWFPJ$I➓/6#! LӾ+ X36x8J |+L;v$Io4301R20M I$-E}@,pS^ޟR[/s¹'0H$IKyfŸfVOπFT*a$I>He~VY/3R/)>d$I>28`Cjw,n@FU*9ttf$I~<;=/4RD~@ X-ѕzἱI$: ԍR a@b X{+Qxuq$IЛzo /~3\8ڒ4BN7$IҀj V]n18H$IYFBj3̵̚ja pp $Is/3R Ӻ-Yj+L;.0ŔI$Av? #!5"aʄj}UKmɽH$IjCYs?h$IDl843.v}m7UiI=&=0Lg0$I4: embe` eQbm0u? $IT!Sƍ'-sv)s#C0:XB2a w I$zbww{."pPzO =Ɔ\[ o($Iaw]`E).Kvi:L*#gР7[$IyGPI=@R 4yR~̮´cg I$I/<tPͽ hDgo 94Z^k盇΄8I56^W$I^0̜N?4*H`237}g+hxoq)SJ@p|` $I%>-hO0eO>\ԣNߌZD6R=K ~n($I$y3D>o4b#px2$yڪtzW~a $I~?x'BwwpH$IZݑnC㧄Pc_9sO gwJ=l1:mKB>Ab<4Lp$Ib o1ZQ@85b̍ S'F,Fe,^I$IjEdù{l4 8Ys_s Z8.x m"+{~?q,Z D!I$ϻ'|XhB)=…']M>5 rgotԎ 獽PH$IjIPhh)n#cÔqA'ug5qwU&rF|1E%I$%]!'3AFD/;Ck_`9 v!ٴtPV;x`'*bQa w I$Ix5 FC3D_~A_#O݆DvV?<qw+I$I{=Z8".#RIYyjǪ=fDl9%M,a8$I$Ywi[7ݍFe$s1ՋBVA?`]#!oz4zjLJo8$I$%@3jAa4(o ;p,,dya=F9ً[LSPH$IJYЉ+3> 5"39aZ<ñh!{TpBGkj}Sp $IlvF.F$I z< '\K*qq.f<2Y!S"-\I$IYwčjF$ w9 \ߪB.1v!Ʊ?+r:^!I$BϹB H"B;L'G[ 4U#5>੐)|#o0aڱ$I>}k&1`U#V?YsV x>{t1[I~D&(I$I/{H0fw"q"y%4 IXyE~M3 8XψL}qE$I[> nD?~sf ]o΁ cT6"?'_Ἣ $I>~.f|'!N?⟩0G KkXZE]ޡ;/&?k OۘH$IRۀwXӨ<7@PnS04aӶp.:@\IWQJ6sS%I$e5ڑv`3:x';wq_vpgHyXZ 3gЂ7{{EuԹn±}$I$8t;b|591nءQ"P6O5i }iR̈́%Q̄p!I䮢]O{H$IRϻ9s֧ a=`- aB\X0"+5"C1Hb?߮3x3&gşggl_hZ^,`5?ߎvĸ%̀M!OZC2#0x LJ0 Gw$I$I}<{Eb+y;iI,`ܚF:5ܛA8-O-|8K7s|#Z8a&><a&/VtbtLʌI$I$I$I$I$I$IRjDD%tEXtdate:create2022-05-31T04:40:26+00:00!Î%tEXtdate:modify2022-05-31T04:40:26+00:00|{2IENDB`Mini Shell

HOME


Mini Shell 1.0
DIR:/home/costmasters.in/www/application/libraries/PHPExcel/Shared/JAMA/
Upload File :
Current File : //home/costmasters.in/www/application/libraries/PHPExcel/Shared/JAMA/EigenvalueDecomposition.php
<?php
/**
 *    @package JAMA
 *
 *    Class to obtain eigenvalues and eigenvectors of a real matrix.
 *
 *    If A is symmetric, then A = V*D*V' where the eigenvalue matrix D
 *    is diagonal and the eigenvector matrix V is orthogonal (i.e.
 *    A = V.times(D.times(V.transpose())) and V.times(V.transpose())
 *    equals the identity matrix).
 *
 *    If A is not symmetric, then the eigenvalue matrix D is block diagonal
 *    with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
 *    lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda].  The
 *    columns of V represent the eigenvectors in the sense that A*V = V*D,
 *    i.e. A.times(V) equals V.times(D).  The matrix V may be badly
 *    conditioned, or even singular, so the validity of the equation
 *    A = V*D*inverse(V) depends upon V.cond().
 *
 *    @author  Paul Meagher
 *    @license PHP v3.0
 *    @version 1.1
 */
class EigenvalueDecomposition
{
    /**
     *    Row and column dimension (square matrix).
     *    @var int
     */
    private $n;

    /**
     *    Internal symmetry flag.
     *    @var int
     */
    private $issymmetric;

    /**
     *    Arrays for internal storage of eigenvalues.
     *    @var array
     */
    private $d = array();
    private $e = array();

    /**
     *    Array for internal storage of eigenvectors.
     *    @var array
     */
    private $V = array();

    /**
    *    Array for internal storage of nonsymmetric Hessenberg form.
    *    @var array
    */
    private $H = array();

    /**
    *    Working storage for nonsymmetric algorithm.
    *    @var array
    */
    private $ort;

    /**
    *    Used for complex scalar division.
    *    @var float
    */
    private $cdivr;
    private $cdivi;

    /**
     *    Symmetric Householder reduction to tridiagonal form.
     *
     *    @access private
     */
    private function tred2()
    {
        //  This is derived from the Algol procedures tred2 by
        //  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
        //  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
        //  Fortran subroutine in EISPACK.
        $this->d = $this->V[$this->n-1];
        // Householder reduction to tridiagonal form.
        for ($i = $this->n-1; $i > 0; --$i) {
            $i_ = $i -1;
            // Scale to avoid under/overflow.
            $h = $scale = 0.0;
            $scale += array_sum(array_map(abs, $this->d));
            if ($scale == 0.0) {
                $this->e[$i] = $this->d[$i_];
                $this->d = array_slice($this->V[$i_], 0, $i_);
                for ($j = 0; $j < $i; ++$j) {
                    $this->V[$j][$i] = $this->V[$i][$j] = 0.0;
                }
            } else {
                // Generate Householder vector.
                for ($k = 0; $k < $i; ++$k) {
                    $this->d[$k] /= $scale;
                    $h += pow($this->d[$k], 2);
                }
                $f = $this->d[$i_];
                $g = sqrt($h);
                if ($f > 0) {
                    $g = -$g;
                }
                $this->e[$i] = $scale * $g;
                $h = $h - $f * $g;
                $this->d[$i_] = $f - $g;
                for ($j = 0; $j < $i; ++$j) {
                    $this->e[$j] = 0.0;
                }
                // Apply similarity transformation to remaining columns.
                for ($j = 0; $j < $i; ++$j) {
                    $f = $this->d[$j];
                    $this->V[$j][$i] = $f;
                    $g = $this->e[$j] + $this->V[$j][$j] * $f;
                    for ($k = $j+1; $k <= $i_; ++$k) {
                        $g += $this->V[$k][$j] * $this->d[$k];
                        $this->e[$k] += $this->V[$k][$j] * $f;
                    }
                    $this->e[$j] = $g;
                }
                $f = 0.0;
                for ($j = 0; $j < $i; ++$j) {
                    $this->e[$j] /= $h;
                    $f += $this->e[$j] * $this->d[$j];
                }
                $hh = $f / (2 * $h);
                for ($j=0; $j < $i; ++$j) {
                    $this->e[$j] -= $hh * $this->d[$j];
                }
                for ($j = 0; $j < $i; ++$j) {
                    $f = $this->d[$j];
                    $g = $this->e[$j];
                    for ($k = $j; $k <= $i_; ++$k) {
                        $this->V[$k][$j] -= ($f * $this->e[$k] + $g * $this->d[$k]);
                    }
                    $this->d[$j] = $this->V[$i-1][$j];
                    $this->V[$i][$j] = 0.0;
                }
            }
            $this->d[$i] = $h;
        }

        // Accumulate transformations.
        for ($i = 0; $i < $this->n-1; ++$i) {
            $this->V[$this->n-1][$i] = $this->V[$i][$i];
            $this->V[$i][$i] = 1.0;
            $h = $this->d[$i+1];
            if ($h != 0.0) {
                for ($k = 0; $k <= $i; ++$k) {
                    $this->d[$k] = $this->V[$k][$i+1] / $h;
                }
                for ($j = 0; $j <= $i; ++$j) {
                    $g = 0.0;
                    for ($k = 0; $k <= $i; ++$k) {
                        $g += $this->V[$k][$i+1] * $this->V[$k][$j];
                    }
                    for ($k = 0; $k <= $i; ++$k) {
                        $this->V[$k][$j] -= $g * $this->d[$k];
                    }
                }
            }
            for ($k = 0; $k <= $i; ++$k) {
                $this->V[$k][$i+1] = 0.0;
            }
        }

        $this->d = $this->V[$this->n-1];
        $this->V[$this->n-1] = array_fill(0, $j, 0.0);
        $this->V[$this->n-1][$this->n-1] = 1.0;
        $this->e[0] = 0.0;
    }

    /**
     *    Symmetric tridiagonal QL algorithm.
     *
     *    This is derived from the Algol procedures tql2, by
     *    Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
     *    Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
     *    Fortran subroutine in EISPACK.
     *
     *    @access private
     */
    private function tql2()
    {
        for ($i = 1; $i < $this->n; ++$i) {
            $this->e[$i-1] = $this->e[$i];
        }
        $this->e[$this->n-1] = 0.0;
        $f = 0.0;
        $tst1 = 0.0;
        $eps  = pow(2.0, -52.0);

        for ($l = 0; $l < $this->n; ++$l) {
            // Find small subdiagonal element
            $tst1 = max($tst1, abs($this->d[$l]) + abs($this->e[$l]));
            $m = $l;
            while ($m < $this->n) {
                if (abs($this->e[$m]) <= $eps * $tst1) {
                    break;
                }
                ++$m;
            }
            // If m == l, $this->d[l] is an eigenvalue,
            // otherwise, iterate.
            if ($m > $l) {
                $iter = 0;
                do {
                    // Could check iteration count here.
                    $iter += 1;
                    // Compute implicit shift
                    $g = $this->d[$l];
                    $p = ($this->d[$l+1] - $g) / (2.0 * $this->e[$l]);
                    $r = hypo($p, 1.0);
                    if ($p < 0) {
                        $r *= -1;
                    }
                    $this->d[$l] = $this->e[$l] / ($p + $r);
                    $this->d[$l+1] = $this->e[$l] * ($p + $r);
                    $dl1 = $this->d[$l+1];
                    $h = $g - $this->d[$l];
                    for ($i = $l + 2; $i < $this->n; ++$i) {
                        $this->d[$i] -= $h;
                    }
                    $f += $h;
                    // Implicit QL transformation.
                    $p = $this->d[$m];
                    $c = 1.0;
                    $c2 = $c3 = $c;
                    $el1 = $this->e[$l + 1];
                    $s = $s2 = 0.0;
                    for ($i = $m-1; $i >= $l; --$i) {
                        $c3 = $c2;
                        $c2 = $c;
                        $s2 = $s;
                        $g  = $c * $this->e[$i];
                        $h  = $c * $p;
                        $r  = hypo($p, $this->e[$i]);
                        $this->e[$i+1] = $s * $r;
                        $s = $this->e[$i] / $r;
                        $c = $p / $r;
                        $p = $c * $this->d[$i] - $s * $g;
                        $this->d[$i+1] = $h + $s * ($c * $g + $s * $this->d[$i]);
                        // Accumulate transformation.
                        for ($k = 0; $k < $this->n; ++$k) {
                            $h = $this->V[$k][$i+1];
                            $this->V[$k][$i+1] = $s * $this->V[$k][$i] + $c * $h;
                            $this->V[$k][$i] = $c * $this->V[$k][$i] - $s * $h;
                        }
                    }
                    $p = -$s * $s2 * $c3 * $el1 * $this->e[$l] / $dl1;
                    $this->e[$l] = $s * $p;
                    $this->d[$l] = $c * $p;
                // Check for convergence.
                } while (abs($this->e[$l]) > $eps * $tst1);
            }
            $this->d[$l] = $this->d[$l] + $f;
            $this->e[$l] = 0.0;
        }

        // Sort eigenvalues and corresponding vectors.
        for ($i = 0; $i < $this->n - 1; ++$i) {
            $k = $i;
            $p = $this->d[$i];
            for ($j = $i+1; $j < $this->n; ++$j) {
                if ($this->d[$j] < $p) {
                    $k = $j;
                    $p = $this->d[$j];
                }
            }
            if ($k != $i) {
                $this->d[$k] = $this->d[$i];
                $this->d[$i] = $p;
                for ($j = 0; $j < $this->n; ++$j) {
                    $p = $this->V[$j][$i];
                    $this->V[$j][$i] = $this->V[$j][$k];
                    $this->V[$j][$k] = $p;
                }
            }
        }
    }

    /**
     *    Nonsymmetric reduction to Hessenberg form.
     *
     *    This is derived from the Algol procedures orthes and ortran,
     *    by Martin and Wilkinson, Handbook for Auto. Comp.,
     *    Vol.ii-Linear Algebra, and the corresponding
     *    Fortran subroutines in EISPACK.
     *
     *    @access private
     */
    private function orthes()
    {
        $low  = 0;
        $high = $this->n-1;

        for ($m = $low+1; $m <= $high-1; ++$m) {
            // Scale column.
            $scale = 0.0;
            for ($i = $m; $i <= $high; ++$i) {
                $scale = $scale + abs($this->H[$i][$m-1]);
            }
            if ($scale != 0.0) {
                // Compute Householder transformation.
                $h = 0.0;
                for ($i = $high; $i >= $m; --$i) {
                    $this->ort[$i] = $this->H[$i][$m-1] / $scale;
                    $h += $this->ort[$i] * $this->ort[$i];
                }
                $g = sqrt($h);
                if ($this->ort[$m] > 0) {
                    $g *= -1;
                }
                $h -= $this->ort[$m] * $g;
                $this->ort[$m] -= $g;
                // Apply Householder similarity transformation
                // H = (I -u * u' / h) * H * (I -u * u') / h)
                for ($j = $m; $j < $this->n; ++$j) {
                    $f = 0.0;
                    for ($i = $high; $i >= $m; --$i) {
                        $f += $this->ort[$i] * $this->H[$i][$j];
                    }
                    $f /= $h;
                    for ($i = $m; $i <= $high; ++$i) {
                        $this->H[$i][$j] -= $f * $this->ort[$i];
                    }
                }
                for ($i = 0; $i <= $high; ++$i) {
                    $f = 0.0;
                    for ($j = $high; $j >= $m; --$j) {
                        $f += $this->ort[$j] * $this->H[$i][$j];
                    }
                    $f = $f / $h;
                    for ($j = $m; $j <= $high; ++$j) {
                        $this->H[$i][$j] -= $f * $this->ort[$j];
                    }
                }
                $this->ort[$m] = $scale * $this->ort[$m];
                $this->H[$m][$m-1] = $scale * $g;
            }
        }

        // Accumulate transformations (Algol's ortran).
        for ($i = 0; $i < $this->n; ++$i) {
            for ($j = 0; $j < $this->n; ++$j) {
                $this->V[$i][$j] = ($i == $j ? 1.0 : 0.0);
            }
        }
        for ($m = $high-1; $m >= $low+1; --$m) {
            if ($this->H[$m][$m-1] != 0.0) {
                for ($i = $m+1; $i <= $high; ++$i) {
                    $this->ort[$i] = $this->H[$i][$m-1];
                }
                for ($j = $m; $j <= $high; ++$j) {
                    $g = 0.0;
                    for ($i = $m; $i <= $high; ++$i) {
                        $g += $this->ort[$i] * $this->V[$i][$j];
                    }
                    // Double division avoids possible underflow
                    $g = ($g / $this->ort[$m]) / $this->H[$m][$m-1];
                    for ($i = $m; $i <= $high; ++$i) {
                        $this->V[$i][$j] += $g * $this->ort[$i];
                    }
                }
            }
        }
    }

    /**
     *    Performs complex division.
     *
     *    @access private
     */
    private function cdiv($xr, $xi, $yr, $yi)
    {
        if (abs($yr) > abs($yi)) {
            $r = $yi / $yr;
            $d = $yr + $r * $yi;
            $this->cdivr = ($xr + $r * $xi) / $d;
            $this->cdivi = ($xi - $r * $xr) / $d;
        } else {
            $r = $yr / $yi;
            $d = $yi + $r * $yr;
            $this->cdivr = ($r * $xr + $xi) / $d;
            $this->cdivi = ($r * $xi - $xr) / $d;
        }
    }

    /**
     *    Nonsymmetric reduction from Hessenberg to real Schur form.
     *
     *    Code is derived from the Algol procedure hqr2,
     *    by Martin and Wilkinson, Handbook for Auto. Comp.,
     *    Vol.ii-Linear Algebra, and the corresponding
     *    Fortran subroutine in EISPACK.
     *
     *    @access private
     */
    private function hqr2()
    {
        //  Initialize
        $nn = $this->n;
        $n  = $nn - 1;
        $low = 0;
        $high = $nn - 1;
        $eps = pow(2.0, -52.0);
        $exshift = 0.0;
        $p = $q = $r = $s = $z = 0;
        // Store roots isolated by balanc and compute matrix norm
        $norm = 0.0;

        for ($i = 0; $i < $nn; ++$i) {
            if (($i < $low) or ($i > $high)) {
                $this->d[$i] = $this->H[$i][$i];
                $this->e[$i] = 0.0;
            }
            for ($j = max($i-1, 0); $j < $nn; ++$j) {
                $norm = $norm + abs($this->H[$i][$j]);
            }
        }

        // Outer loop over eigenvalue index
        $iter = 0;
        while ($n >= $low) {
            // Look for single small sub-diagonal element
            $l = $n;
            while ($l > $low) {
                $s = abs($this->H[$l-1][$l-1]) + abs($this->H[$l][$l]);
                if ($s == 0.0) {
                    $s = $norm;
                }
                if (abs($this->H[$l][$l-1]) < $eps * $s) {
                    break;
                }
                --$l;
            }
            // Check for convergence
            // One root found
            if ($l == $n) {
                $this->H[$n][$n] = $this->H[$n][$n] + $exshift;
                $this->d[$n] = $this->H[$n][$n];
                $this->e[$n] = 0.0;
                --$n;
                $iter = 0;
            // Two roots found
            } elseif ($l == $n-1) {
                $w = $this->H[$n][$n-1] * $this->H[$n-1][$n];
                $p = ($this->H[$n-1][$n-1] - $this->H[$n][$n]) / 2.0;
                $q = $p * $p + $w;
                $z = sqrt(abs($q));
                $this->H[$n][$n] = $this->H[$n][$n] + $exshift;
                $this->H[$n-1][$n-1] = $this->H[$n-1][$n-1] + $exshift;
                $x = $this->H[$n][$n];
                // Real pair
                if ($q >= 0) {
                    if ($p >= 0) {
                        $z = $p + $z;
                    } else {
                        $z = $p - $z;
                    }
                    $this->d[$n-1] = $x + $z;
                    $this->d[$n] = $this->d[$n-1];
                    if ($z != 0.0) {
                        $this->d[$n] = $x - $w / $z;
                    }
                    $this->e[$n-1] = 0.0;
                    $this->e[$n] = 0.0;
                    $x = $this->H[$n][$n-1];
                    $s = abs($x) + abs($z);
                    $p = $x / $s;
                    $q = $z / $s;
                    $r = sqrt($p * $p + $q * $q);
                    $p = $p / $r;
                    $q = $q / $r;
                    // Row modification
                    for ($j = $n-1; $j < $nn; ++$j) {
                        $z = $this->H[$n-1][$j];
                        $this->H[$n-1][$j] = $q * $z + $p * $this->H[$n][$j];
                        $this->H[$n][$j] = $q * $this->H[$n][$j] - $p * $z;
                    }
                    // Column modification
                    for ($i = 0; $i <= $n; ++$i) {
                        $z = $this->H[$i][$n-1];
                        $this->H[$i][$n-1] = $q * $z + $p * $this->H[$i][$n];
                        $this->H[$i][$n] = $q * $this->H[$i][$n] - $p * $z;
                    }
                    // Accumulate transformations
                    for ($i = $low; $i <= $high; ++$i) {
                        $z = $this->V[$i][$n-1];
                        $this->V[$i][$n-1] = $q * $z + $p * $this->V[$i][$n];
                        $this->V[$i][$n] = $q * $this->V[$i][$n] - $p * $z;
                    }
                // Complex pair
                } else {
                    $this->d[$n-1] = $x + $p;
                    $this->d[$n] = $x + $p;
                    $this->e[$n-1] = $z;
                    $this->e[$n] = -$z;
                }
                $n = $n - 2;
                $iter = 0;
            // No convergence yet
            } else {
                // Form shift
                $x = $this->H[$n][$n];
                $y = 0.0;
                $w = 0.0;
                if ($l < $n) {
                    $y = $this->H[$n-1][$n-1];
                    $w = $this->H[$n][$n-1] * $this->H[$n-1][$n];
                }
                // Wilkinson's original ad hoc shift
                if ($iter == 10) {
                    $exshift += $x;
                    for ($i = $low; $i <= $n; ++$i) {
                        $this->H[$i][$i] -= $x;
                    }
                    $s = abs($this->H[$n][$n-1]) + abs($this->H[$n-1][$n-2]);
                    $x = $y = 0.75 * $s;
                    $w = -0.4375 * $s * $s;
                }
                // MATLAB's new ad hoc shift
                if ($iter == 30) {
                    $s = ($y - $x) / 2.0;
                    $s = $s * $s + $w;
                    if ($s > 0) {
                        $s = sqrt($s);
                        if ($y < $x) {
                            $s = -$s;
                        }
                        $s = $x - $w / (($y - $x) / 2.0 + $s);
                        for ($i = $low; $i <= $n; ++$i) {
                            $this->H[$i][$i] -= $s;
                        }
                        $exshift += $s;
                        $x = $y = $w = 0.964;
                    }
                }
                // Could check iteration count here.
                $iter = $iter + 1;
                // Look for two consecutive small sub-diagonal elements
                $m = $n - 2;
                while ($m >= $l) {
                    $z = $this->H[$m][$m];
                    $r = $x - $z;
                    $s = $y - $z;
                    $p = ($r * $s - $w) / $this->H[$m+1][$m] + $this->H[$m][$m+1];
                    $q = $this->H[$m+1][$m+1] - $z - $r - $s;
                    $r = $this->H[$m+2][$m+1];
                    $s = abs($p) + abs($q) + abs($r);
                    $p = $p / $s;
                    $q = $q / $s;
                    $r = $r / $s;
                    if ($m == $l) {
                        break;
                    }
                    if (abs($this->H[$m][$m-1]) * (abs($q) + abs($r)) <
                        $eps * (abs($p) * (abs($this->H[$m-1][$m-1]) + abs($z) + abs($this->H[$m+1][$m+1])))) {
                        break;
                    }
                    --$m;
                }
                for ($i = $m + 2; $i <= $n; ++$i) {
                    $this->H[$i][$i-2] = 0.0;
                    if ($i > $m+2) {
                        $this->H[$i][$i-3] = 0.0;
                    }
                }
                // Double QR step involving rows l:n and columns m:n
                for ($k = $m; $k <= $n-1; ++$k) {
                    $notlast = ($k != $n-1);
                    if ($k != $m) {
                        $p = $this->H[$k][$k-1];
                        $q = $this->H[$k+1][$k-1];
                        $r = ($notlast ? $this->H[$k+2][$k-1] : 0.0);
                        $x = abs($p) + abs($q) + abs($r);
                        if ($x != 0.0) {
                            $p = $p / $x;
                            $q = $q / $x;
                            $r = $r / $x;
                        }
                    }
                    if ($x == 0.0) {
                        break;
                    }
                    $s = sqrt($p * $p + $q * $q + $r * $r);
                    if ($p < 0) {
                        $s = -$s;
                    }
                    if ($s != 0) {
                        if ($k != $m) {
                            $this->H[$k][$k-1] = -$s * $x;
                        } elseif ($l != $m) {
                            $this->H[$k][$k-1] = -$this->H[$k][$k-1];
                        }
                        $p = $p + $s;
                        $x = $p / $s;
                        $y = $q / $s;
                        $z = $r / $s;
                        $q = $q / $p;
                        $r = $r / $p;
                        // Row modification
                        for ($j = $k; $j < $nn; ++$j) {
                            $p = $this->H[$k][$j] + $q * $this->H[$k+1][$j];
                            if ($notlast) {
                                $p = $p + $r * $this->H[$k+2][$j];
                                $this->H[$k+2][$j] = $this->H[$k+2][$j] - $p * $z;
                            }
                            $this->H[$k][$j] = $this->H[$k][$j] - $p * $x;
                            $this->H[$k+1][$j] = $this->H[$k+1][$j] - $p * $y;
                        }
                        // Column modification
                        for ($i = 0; $i <= min($n, $k+3); ++$i) {
                            $p = $x * $this->H[$i][$k] + $y * $this->H[$i][$k+1];
                            if ($notlast) {
                                $p = $p + $z * $this->H[$i][$k+2];
                                $this->H[$i][$k+2] = $this->H[$i][$k+2] - $p * $r;
                            }
                            $this->H[$i][$k] = $this->H[$i][$k] - $p;
                            $this->H[$i][$k+1] = $this->H[$i][$k+1] - $p * $q;
                        }
                        // Accumulate transformations
                        for ($i = $low; $i <= $high; ++$i) {
                            $p = $x * $this->V[$i][$k] + $y * $this->V[$i][$k+1];
                            if ($notlast) {
                                $p = $p + $z * $this->V[$i][$k+2];
                                $this->V[$i][$k+2] = $this->V[$i][$k+2] - $p * $r;
                            }
                            $this->V[$i][$k] = $this->V[$i][$k] - $p;
                            $this->V[$i][$k+1] = $this->V[$i][$k+1] - $p * $q;
                        }
                    }  // ($s != 0)
                }  // k loop
            }  // check convergence
        }  // while ($n >= $low)

        // Backsubstitute to find vectors of upper triangular form
        if ($norm == 0.0) {
            return;
        }

        for ($n = $nn-1; $n >= 0; --$n) {
            $p = $this->d[$n];
            $q = $this->e[$n];
            // Real vector
            if ($q == 0) {
                $l = $n;
                $this->H[$n][$n] = 1.0;
                for ($i = $n-1; $i >= 0; --$i) {
                    $w = $this->H[$i][$i] - $p;
                    $r = 0.0;
                    for ($j = $l; $j <= $n; ++$j) {
                        $r = $r + $this->H[$i][$j] * $this->H[$j][$n];
                    }
                    if ($this->e[$i] < 0.0) {
                        $z = $w;
                        $s = $r;
                    } else {
                        $l = $i;
                        if ($this->e[$i] == 0.0) {
                            if ($w != 0.0) {
                                $this->H[$i][$n] = -$r / $w;
                            } else {
                                $this->H[$i][$n] = -$r / ($eps * $norm);
                            }
                        // Solve real equations
                        } else {
                            $x = $this->H[$i][$i+1];
                            $y = $this->H[$i+1][$i];
                            $q = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i];
                            $t = ($x * $s - $z * $r) / $q;
                            $this->H[$i][$n] = $t;
                            if (abs($x) > abs($z)) {
                                $this->H[$i+1][$n] = (-$r - $w * $t) / $x;
                            } else {
                                $this->H[$i+1][$n] = (-$s - $y * $t) / $z;
                            }
                        }
                        // Overflow control
                        $t = abs($this->H[$i][$n]);
                        if (($eps * $t) * $t > 1) {
                            for ($j = $i; $j <= $n; ++$j) {
                                $this->H[$j][$n] = $this->H[$j][$n] / $t;
                            }
                        }
                    }
                }
            // Complex vector
            } elseif ($q < 0) {
                $l = $n-1;
                // Last vector component imaginary so matrix is triangular
                if (abs($this->H[$n][$n-1]) > abs($this->H[$n-1][$n])) {
                    $this->H[$n-1][$n-1] = $q / $this->H[$n][$n-1];
                    $this->H[$n-1][$n] = -($this->H[$n][$n] - $p) / $this->H[$n][$n-1];
                } else {
                    $this->cdiv(0.0, -$this->H[$n-1][$n], $this->H[$n-1][$n-1] - $p, $q);
                    $this->H[$n-1][$n-1] = $this->cdivr;
                    $this->H[$n-1][$n]   = $this->cdivi;
                }
                $this->H[$n][$n-1] = 0.0;
                $this->H[$n][$n] = 1.0;
                for ($i = $n-2; $i >= 0; --$i) {
                    // double ra,sa,vr,vi;
                    $ra = 0.0;
                    $sa = 0.0;
                    for ($j = $l; $j <= $n; ++$j) {
                        $ra = $ra + $this->H[$i][$j] * $this->H[$j][$n-1];
                        $sa = $sa + $this->H[$i][$j] * $this->H[$j][$n];
                    }
                    $w = $this->H[$i][$i] - $p;
                    if ($this->e[$i] < 0.0) {
                        $z = $w;
                        $r = $ra;
                        $s = $sa;
                    } else {
                        $l = $i;
                        if ($this->e[$i] == 0) {
                            $this->cdiv(-$ra, -$sa, $w, $q);
                            $this->H[$i][$n-1] = $this->cdivr;
                            $this->H[$i][$n]   = $this->cdivi;
                        } else {
                            // Solve complex equations
                            $x = $this->H[$i][$i+1];
                            $y = $this->H[$i+1][$i];
                            $vr = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i] - $q * $q;
                            $vi = ($this->d[$i] - $p) * 2.0 * $q;
                            if ($vr == 0.0 & $vi == 0.0) {
                                $vr = $eps * $norm * (abs($w) + abs($q) + abs($x) + abs($y) + abs($z));
                            }
                            $this->cdiv($x * $r - $z * $ra + $q * $sa, $x * $s - $z * $sa - $q * $ra, $vr, $vi);
                            $this->H[$i][$n-1] = $this->cdivr;
                            $this->H[$i][$n]   = $this->cdivi;
                            if (abs($x) > (abs($z) + abs($q))) {
                                $this->H[$i+1][$n-1] = (-$ra - $w * $this->H[$i][$n-1] + $q * $this->H[$i][$n]) / $x;
                                $this->H[$i+1][$n] = (-$sa - $w * $this->H[$i][$n] - $q * $this->H[$i][$n-1]) / $x;
                            } else {
                                $this->cdiv(-$r - $y * $this->H[$i][$n-1], -$s - $y * $this->H[$i][$n], $z, $q);
                                $this->H[$i+1][$n-1] = $this->cdivr;
                                $this->H[$i+1][$n]   = $this->cdivi;
                            }
                        }
                        // Overflow control
                        $t = max(abs($this->H[$i][$n-1]), abs($this->H[$i][$n]));
                        if (($eps * $t) * $t > 1) {
                            for ($j = $i; $j <= $n; ++$j) {
                                $this->H[$j][$n-1] = $this->H[$j][$n-1] / $t;
                                $this->H[$j][$n]   = $this->H[$j][$n] / $t;
                            }
                        }
                    } // end else
                } // end for
            } // end else for complex case
        } // end for

        // Vectors of isolated roots
        for ($i = 0; $i < $nn; ++$i) {
            if ($i < $low | $i > $high) {
                for ($j = $i; $j < $nn; ++$j) {
                    $this->V[$i][$j] = $this->H[$i][$j];
                }
            }
        }

        // Back transformation to get eigenvectors of original matrix
        for ($j = $nn-1; $j >= $low; --$j) {
            for ($i = $low; $i <= $high; ++$i) {
                $z = 0.0;
                for ($k = $low; $k <= min($j, $high); ++$k) {
                    $z = $z + $this->V[$i][$k] * $this->H[$k][$j];
                }
                $this->V[$i][$j] = $z;
            }
        }
    } // end hqr2

    /**
     *    Constructor: Check for symmetry, then construct the eigenvalue decomposition
     *
     *    @access public
     *    @param A  Square matrix
     *    @return Structure to access D and V.
     */
    public function __construct($Arg)
    {
        $this->A = $Arg->getArray();
        $this->n = $Arg->getColumnDimension();

        $issymmetric = true;
        for ($j = 0; ($j < $this->n) & $issymmetric; ++$j) {
            for ($i = 0; ($i < $this->n) & $issymmetric; ++$i) {
                $issymmetric = ($this->A[$i][$j] == $this->A[$j][$i]);
            }
        }

        if ($issymmetric) {
            $this->V = $this->A;
            // Tridiagonalize.
            $this->tred2();
            // Diagonalize.
            $this->tql2();
        } else {
            $this->H = $this->A;
            $this->ort = array();
            // Reduce to Hessenberg form.
            $this->orthes();
            // Reduce Hessenberg to real Schur form.
            $this->hqr2();
        }
    }

    /**
     *    Return the eigenvector matrix
     *
     *    @access public
     *    @return V
     */
    public function getV()
    {
        return new Matrix($this->V, $this->n, $this->n);
    }

    /**
     *    Return the real parts of the eigenvalues
     *
     *    @access public
     *    @return real(diag(D))
     */
    public function getRealEigenvalues()
    {
        return $this->d;
    }

    /**
     *    Return the imaginary parts of the eigenvalues
     *
     *    @access public
     *    @return imag(diag(D))
     */
    public function getImagEigenvalues()
    {
        return $this->e;
    }

    /**
     *    Return the block diagonal eigenvalue matrix
     *
     *    @access public
     *    @return D
     */
    public function getD()
    {
        for ($i = 0; $i < $this->n; ++$i) {
            $D[$i] = array_fill(0, $this->n, 0.0);
            $D[$i][$i] = $this->d[$i];
            if ($this->e[$i] == 0) {
                continue;
            }
            $o = ($this->e[$i] > 0) ? $i + 1 : $i - 1;
            $D[$i][$o] = $this->e[$i];
        }
        return new Matrix($D);
    }
}