PNG  IHDRQgAMA a cHRMz&u0`:pQ<bKGDgmIDATxwUﹻ& ^CX(J I@ "% (** BX +*i"]j(IH{~R)[~>h{}gy)I$Ij .I$I$ʊy@}x.: $I$Ii}VZPC)I$IF ^0ʐJ$I$Q^}{"r=OzI$gRZeC.IOvH eKX $IMpxsk.쒷/&r[޳<v| .I~)@$updYRa$I |M.e JaֶpSYR6j>h%IRز if&uJ)M$I vLi=H;7UJ,],X$I1AҒJ$ XY XzI@GNҥRT)E@;]K*Mw;#5_wOn~\ DC&$(A5 RRFkvIR}l!RytRl;~^ǷJj اy뷦BZJr&ӥ8Pjw~vnv X^(I;4R=P[3]J,]ȏ~:3?[ a&e)`e*P[4]T=Cq6R[ ~ޤrXR Հg(t_HZ-Hg M$ãmL5R uk*`%C-E6/%[t X.{8P9Z.vkXŐKjgKZHg(aK9ڦmKjѺm_ \#$5,)-  61eJ,5m| r'= &ڡd%-]J on Xm|{ RҞe $eڧY XYrԮ-a7RK6h>n$5AVڴi*ֆK)mѦtmr1p| q:흺,)Oi*ֺK)ܬ֦K-5r3>0ԔHjJئEZj,%re~/z%jVMڸmrt)3]J,T K֦OvԒgii*bKiNO~%PW0=dii2tJ9Jݕ{7"I P9JKTbu,%r"6RKU}Ij2HKZXJ,妝 XYrP ެ24c%i^IK|.H,%rb:XRl1X4Pe/`x&P8Pj28Mzsx2r\zRPz4J}yP[g=L) .Q[6RjWgp FIH*-`IMRaK9TXcq*I y[jE>cw%gLRԕiFCj-ďa`#e~I j,%r,)?[gp FI˨mnWX#>mʔ XA DZf9,nKҲzIZXJ,L#kiPz4JZF,I,`61%2s $,VOϚ2/UFJfy7K> X+6 STXIeJILzMfKm LRaK9%|4p9LwJI!`NsiazĔ)%- XMq>pk$-$Q2x#N ؎-QR}ᶦHZډ)J,l#i@yn3LN`;nڔ XuX5pF)m|^0(>BHF9(cզEerJI rg7 4I@z0\JIi䵙RR0s;$s6eJ,`n 䂦0a)S)A 1eJ,堌#635RIgpNHuTH_SԕqVe ` &S)>p;S$魁eKIuX`I4춒o}`m$1":PI<[v9^\pTJjriRŭ P{#{R2,`)e-`mgj~1ϣLKam7&U\j/3mJ,`F;M'䱀 .KR#)yhTq;pcK9(q!w?uRR,n.yw*UXj#\]ɱ(qv2=RqfB#iJmmL<]Y͙#$5 uTU7ӦXR+q,`I}qL'`6Kͷ6r,]0S$- [RKR3oiRE|nӦXR.(i:LDLTJjY%o:)6rxzҒqTJjh㞦I.$YR.ʼnGZ\ֿf:%55 I˼!6dKxm4E"mG_ s? .e*?LRfK9%q#uh$)i3ULRfK9yxm܌bj84$i1U^@Wbm4uJ,ҪA>_Ij?1v32[gLRD96oTaR׿N7%L2 NT,`)7&ƝL*꽙yp_$M2#AS,`)7$rkTA29_Iye"|/0t)$n XT2`YJ;6Jx".e<`$) PI$5V4]29SRI>~=@j]lp2`K9Jaai^" Ԋ29ORI%:XV5]JmN9]H;1UC39NI%Xe78t)a;Oi Ҙ>Xt"~G>_mn:%|~ޅ_+]$o)@ǀ{hgN;IK6G&rp)T2i୦KJuv*T=TOSV>(~D>dm,I*Ɛ:R#ۙNI%D>G.n$o;+#RR!.eU˽TRI28t)1LWϚ>IJa3oFbu&:tJ*(F7y0ZR ^p'Ii L24x| XRI%ۄ>S1]Jy[zL$adB7.eh4%%누>WETf+3IR:I3Xה)3אOۦSRO'ٺ)S}"qOr[B7ϙ.edG)^ETR"RtRݜh0}LFVӦDB^k_JDj\=LS(Iv─aTeZ%eUAM-0;~˃@i|l @S4y72>sX-vA}ϛBI!ݎߨWl*)3{'Y|iSlEڻ(5KtSI$Uv02,~ԩ~x;P4ցCrO%tyn425:KMlD ^4JRxSهF_}شJTS6uj+ﷸk$eZO%G*^V2u3EMj3k%)okI]dT)URKDS 7~m@TJR~荪fT"֛L \sM -0T KfJz+nإKr L&j()[E&I ߴ>e FW_kJR|!O:5/2跌3T-'|zX ryp0JS ~^F>-2< `*%ZFP)bSn"L :)+pʷf(pO3TMW$~>@~ū:TAIsV1}S2<%ޟM?@iT ,Eūoz%i~g|`wS(]oȤ8)$ ntu`өe`6yPl IzMI{ʣzʨ )IZ2= ld:5+請M$-ї;U>_gsY$ÁN5WzWfIZ)-yuXIfp~S*IZdt;t>KūKR|$#LcԀ+2\;kJ`]YǔM1B)UbG"IRߊ<xܾӔJ0Z='Y嵤 Leveg)$znV-º^3Ւof#0Tfk^Zs[*I꯳3{)ˬW4Ւ4 OdpbZRS|*I 55#"&-IvT&/윚Ye:i$ 9{LkuRe[I~_\ؠ%>GL$iY8 9ܕ"S`kS.IlC;Ҏ4x&>u_0JLr<J2(^$5L s=MgV ~,Iju> 7r2)^=G$1:3G< `J3~&IR% 6Tx/rIj3O< ʔ&#f_yXJiގNSz; Tx(i8%#4 ~AS+IjerIUrIj362v885+IjAhK__5X%nV%Iͳ-y|7XV2v4fzo_68"S/I-qbf; LkF)KSM$ Ms>K WNV}^`-큧32ŒVؙGdu,^^m%6~Nn&͓3ŒVZMsRpfEW%IwdǀLm[7W&bIRL@Q|)* i ImsIMmKmyV`i$G+R 0tV'!V)֏28vU7͒vHꦼtxꗞT ;S}7Mf+fIRHNZUkUx5SAJㄌ9MqμAIRi|j5)o*^'<$TwI1hEU^c_j?Е$%d`z cyf,XO IJnTgA UXRD }{H}^S,P5V2\Xx`pZ|Yk:$e ~ @nWL.j+ϝYb퇪bZ BVu)u/IJ_ 1[p.p60bC >|X91P:N\!5qUB}5a5ja `ubcVxYt1N0Zzl4]7­gKj]?4ϻ *[bg$)+À*x쳀ogO$~,5 زUS9 lq3+5mgw@np1sso Ӻ=|N6 /g(Wv7U;zωM=wk,0uTg_`_P`uz?2yI!b`kĸSo+Qx%!\οe|އԁKS-s6pu_(ֿ$i++T8=eY; צP+phxWQv*|p1. ά. XRkIQYP,drZ | B%wP|S5`~́@i޾ E;Չaw{o'Q?%iL{u D?N1BD!owPHReFZ* k_-~{E9b-~P`fE{AܶBJAFO wx6Rox5 K5=WwehS8 (JClJ~ p+Fi;ŗo+:bD#g(C"wA^ r.F8L;dzdIHUX݆ϞXg )IFqem%I4dj&ppT{'{HOx( Rk6^C٫O.)3:s(۳(Z?~ٻ89zmT"PLtw䥈5&b<8GZ-Y&K?e8,`I6e(֍xb83 `rzXj)F=l($Ij 2*(F?h(/9ik:I`m#p3MgLaKjc/U#n5S# m(^)=y=đx8ŬI[U]~SцA4p$-F i(R,7Cx;X=cI>{Km\ o(Tv2vx2qiiDJN,Ҏ!1f 5quBj1!8 rDFd(!WQl,gSkL1Bxg''՞^ǘ;pQ P(c_ IRujg(Wz bs#P­rz> k c&nB=q+ؔXn#r5)co*Ũ+G?7< |PQӣ'G`uOd>%Mctz# Ԫڞ&7CaQ~N'-P.W`Oedp03C!IZcIAMPUۀ5J<\u~+{9(FbbyAeBhOSܳ1 bÈT#ŠyDžs,`5}DC-`̞%r&ڙa87QWWp6e7 Rϫ/oY ꇅ Nܶըtc!LA T7V4Jsū I-0Pxz7QNF_iZgúWkG83 0eWr9 X]㾮݁#Jˢ C}0=3ݱtBi]_ &{{[/o[~ \q鯜00٩|cD3=4B_b RYb$óBRsf&lLX#M*C_L܄:gx)WΘsGSbuL rF$9';\4Ɍq'n[%p.Q`u hNb`eCQyQ|l_C>Lb꟟3hSb #xNxSs^ 88|Mz)}:](vbۢamŖ࿥ 0)Q7@0=?^k(*J}3ibkFn HjB׻NO z x}7p 0tfDX.lwgȔhԾŲ }6g E |LkLZteu+=q\Iv0쮑)QٵpH8/2?Σo>Jvppho~f>%bMM}\//":PTc(v9v!gոQ )UfVG+! 35{=x\2+ki,y$~A1iC6#)vC5^>+gǵ@1Hy٪7u;p psϰu/S <aʸGu'tD1ԝI<pg|6j'p:tպhX{o(7v],*}6a_ wXRk,O]Lܳ~Vo45rp"N5k;m{rZbΦ${#)`(Ŵg,;j%6j.pyYT?}-kBDc3qA`NWQū20/^AZW%NQ MI.X#P#,^Ebc&?XR tAV|Y.1!؅⨉ccww>ivl(JT~ u`ٵDm q)+Ri x/x8cyFO!/*!/&,7<.N,YDŽ&ܑQF1Bz)FPʛ?5d 6`kQձ λc؎%582Y&nD_$Je4>a?! ͨ|ȎWZSsv8 j(I&yj Jb5m?HWp=g}G3#|I,5v珿] H~R3@B[☉9Ox~oMy=J;xUVoj bUsl_35t-(ՃɼRB7U!qc+x4H_Qo֮$[GO<4`&č\GOc[.[*Af%mG/ ňM/r W/Nw~B1U3J?P&Y )`ѓZ1p]^l“W#)lWZilUQu`-m|xĐ,_ƪ|9i:_{*(3Gѧ}UoD+>m_?VPۅ15&}2|/pIOʵ> GZ9cmíتmnz)yߐbD >e}:) r|@R5qVSA10C%E_'^8cR7O;6[eKePGϦX7jb}OTGO^jn*媓7nGMC t,k31Rb (vyܴʭ!iTh8~ZYZp(qsRL ?b}cŨʊGO^!rPJO15MJ[c&~Z`"ѓޔH1C&^|Ш|rʼ,AwĴ?b5)tLU)F| &g٣O]oqSUjy(x<Ϳ3 .FSkoYg2 \_#wj{u'rQ>o;%n|F*O_L"e9umDds?.fuuQbIWz |4\0 sb;OvxOSs; G%T4gFRurj(֍ڑb uԖKDu1MK{1^ q; C=6\8FR艇!%\YÔU| 88m)֓NcLve C6z;o&X x59:q61Z(T7>C?gcļxѐ Z oo-08jہ x,`' ҔOcRlf~`jj".Nv+sM_]Zk g( UOPyεx%pUh2(@il0ݽQXxppx-NS( WO+轾 nFߢ3M<;z)FBZjciu/QoF 7R¥ ZFLF~#ȣߨ^<쩡ݛкvџ))ME>ώx4m#!-m!L;vv#~Y[đKmx9.[,UFS CVkZ +ߟrY٧IZd/ioi$%͝ب_ֶX3ܫhNU ZZgk=]=bbJS[wjU()*I =ώ:}-蹞lUj:1}MWm=̛ _ ¾,8{__m{_PVK^n3esw5ӫh#$-q=A̟> ,^I}P^J$qY~Q[ Xq9{#&T.^GVj__RKpn,b=`żY@^՝;z{paVKkQXj/)y TIc&F;FBG7wg ZZDG!x r_tƢ!}i/V=M/#nB8 XxЫ ^@CR<{䤭YCN)eKOSƟa $&g[i3.C6xrOc8TI;o hH6P&L{@q6[ Gzp^71j(l`J}]e6X☉#͕ ׈$AB1Vjh㭦IRsqFBjwQ_7Xk>y"N=MB0 ,C #o6MRc0|$)ف"1!ixY<B9mx `,tA>)5ػQ?jQ?cn>YZe Tisvh# GMމȇp:ԴVuږ8ɼH]C.5C!UV;F`mbBk LTMvPʍϤj?ԯ/Qr1NB`9s"s TYsz &9S%U԰> {<ؿSMxB|H\3@!U| k']$U+> |HHMLޢ?V9iD!-@x TIî%6Z*9X@HMW#?nN ,oe6?tQwڱ.]-y':mW0#!J82qFjH -`ѓ&M0u Uγmxϵ^-_\])@0Rt.8/?ٰCY]x}=sD3ojަЫNuS%U}ԤwHH>ڗjܷ_3gN q7[q2la*ArǓԖ+p8/RGM ]jacd(JhWko6ڎbj]i5Bj3+3!\j1UZLsLTv8HHmup<>gKMJj0@H%,W΃7R) ">c, xixј^ aܖ>H[i.UIHc U1=yW\=S*GR~)AF=`&2h`DzT󑓶J+?W+}C%P:|0H܆}-<;OC[~o.$~i}~HQ TvXΈr=b}$vizL4:ȰT|4~*!oXQR6Lk+#t/g lԁߖ[Jڶ_N$k*". xsxX7jRVbAAʯKҎU3)zSNN _'s?f)6X!%ssAkʱ>qƷb hg %n ~p1REGMHH=BJiy[<5 ǁJҖgKR*倳e~HUy)Ag,K)`Vw6bRR:qL#\rclK/$sh*$ 6덤 KԖc 3Z9=Ɣ=o>X Ώ"1 )a`SJJ6k(<c e{%kϊP+SL'TcMJWRm ŏ"w)qc ef꒵i?b7b('"2r%~HUS1\<(`1Wx9=8HY9m:X18bgD1u ~|H;K-Uep,, C1 RV.MR5άh,tWO8WC$ XRVsQS]3GJ|12 [vM :k#~tH30Rf-HYݺ-`I9%lIDTm\ S{]9gOڒMNCV\G*2JRŨ;Rҏ^ڽ̱mq1Eu?To3I)y^#jJw^Ńj^vvlB_⋌P4x>0$c>K†Aļ9s_VjTt0l#m>E-,,x,-W)سo&96RE XR.6bXw+)GAEvL)͞K4$p=Ũi_ѱOjb HY/+@θH9޼]Nԥ%n{ &zjT? Ty) s^ULlb,PiTf^<À] 62R^V7)S!nllS6~͝V}-=%* ʻ>G DnK<y&>LPy7'r=Hj 9V`[c"*^8HpcO8bnU`4JȪAƋ#1_\ XϘHPRgik(~G~0DAA_2p|J묭a2\NCr]M_0 ^T%e#vD^%xy-n}-E\3aS%yN!r_{ )sAw ڼp1pEAk~v<:`'ӭ^5 ArXOI驻T (dk)_\ PuA*BY]yB"l\ey hH*tbK)3 IKZ򹞋XjN n *n>k]X_d!ryBH ]*R 0(#'7 %es9??ښFC,ՁQPjARJ\Ρw K#jahgw;2$l*) %Xq5!U᢯6Re] |0[__64ch&_}iL8KEgҎ7 M/\`|.p,~`a=BR?xܐrQ8K XR2M8f ?`sgWS%" Ԉ 7R%$ N}?QL1|-эټwIZ%pvL3Hk>,ImgW7{E xPHx73RA @RS CC !\ȟ5IXR^ZxHл$Q[ŝ40 (>+ _C >BRt<,TrT {O/H+˟Pl6 I B)/VC<6a2~(XwV4gnXR ϱ5ǀHٻ?tw똤Eyxp{#WK qG%5],(0ӈH HZ])ג=K1j&G(FbM@)%I` XRg ʔ KZG(vP,<`[ Kn^ SJRsAʠ5xՅF`0&RbV tx:EaUE/{fi2;.IAwW8/tTxAGOoN?G}l L(n`Zv?pB8K_gI+ܗ #i?ޙ.) p$utc ~DžfՈEo3l/)I-U?aԅ^jxArA ΧX}DmZ@QLےbTXGd.^|xKHR{|ΕW_h] IJ`[G9{).y) 0X YA1]qp?p_k+J*Y@HI>^?gt.06Rn ,` ?);p pSF9ZXLBJPWjgQ|&)7! HjQt<| ؅W5 x W HIzYoVMGP Hjn`+\(dNW)F+IrS[|/a`K|ͻ0Hj{R,Q=\ (F}\WR)AgSG`IsnAR=|8$}G(vC$)s FBJ?]_u XRvύ6z ŨG[36-T9HzpW̞ú Xg큽=7CufzI$)ki^qk-) 0H*N` QZkk]/tnnsI^Gu't=7$ Z;{8^jB% IItRQS7[ϭ3 $_OQJ`7!]W"W,)Iy W AJA;KWG`IY{8k$I$^%9.^(`N|LJ%@$I}ֽp=FB*xN=gI?Q{٥4B)mw $Igc~dZ@G9K X?7)aK%݅K$IZ-`IpC U6$I\0>!9k} Xa IIS0H$I H ?1R.Чj:4~Rw@p$IrA*u}WjWFPJ$I➓/6#! LӾ+ X36x8J |+L;v$Io4301R20M I$-E}@,pS^ޟR[/s¹'0H$IKyfŸfVOπFT*a$I>He~VY/3R/)>d$I>28`Cjw,n@FU*9ttf$I~<;=/4RD~@ X-ѕzἱI$: ԍR a@b X{+Qxuq$IЛzo /~3\8ڒ4BN7$IҀj V]n18H$IYFBj3̵̚ja pp $Is/3R Ӻ-Yj+L;.0ŔI$Av? #!5"aʄj}UKmɽH$IjCYs?h$IDl843.v}m7UiI=&=0Lg0$I4: embe` eQbm0u? $IT!Sƍ'-sv)s#C0:XB2a w I$zbww{."pPzO =Ɔ\[ o($Iaw]`E).Kvi:L*#gР7[$IyGPI=@R 4yR~̮´cg I$I/<tPͽ hDgo 94Z^k盇΄8I56^W$I^0̜N?4*H`237}g+hxoq)SJ@p|` $I%>-hO0eO>\ԣNߌZD6R=K ~n($I$y3D>o4b#px2$yڪtzW~a $I~?x'BwwpH$IZݑnC㧄Pc_9sO gwJ=l1:mKB>Ab<4Lp$Ib o1ZQ@85b̍ S'F,Fe,^I$IjEdù{l4 8Ys_s Z8.x m"+{~?q,Z D!I$ϻ'|XhB)=…']M>5 rgotԎ 獽PH$IjIPhh)n#cÔqA'ug5qwU&rF|1E%I$%]!'3AFD/;Ck_`9 v!ٴtPV;x`'*bQa w I$Ix5 FC3D_~A_#O݆DvV?<qw+I$I{=Z8".#RIYyjǪ=fDl9%M,a8$I$Ywi[7ݍFe$s1ՋBVA?`]#!oz4zjLJo8$I$%@3jAa4(o ;p,,dya=F9ً[LSPH$IJYЉ+3> 5"39aZ<ñh!{TpBGkj}Sp $IlvF.F$I z< '\K*qq.f<2Y!S"-\I$IYwčjF$ w9 \ߪB.1v!Ʊ?+r:^!I$BϹB H"B;L'G[ 4U#5>੐)|#o0aڱ$I>}k&1`U#V?YsV x>{t1[I~D&(I$I/{H0fw"q"y%4 IXyE~M3 8XψL}qE$I[> nD?~sf ]o΁ cT6"?'_Ἣ $I>~.f|'!N?⟩0G KkXZE]ޡ;/&?k OۘH$IRۀwXӨ<7@PnS04aӶp.:@\IWQJ6sS%I$e5ڑv`3:x';wq_vpgHyXZ 3gЂ7{{EuԹn±}$I$8t;b|591nءQ"P6O5i }iR̈́%Q̄p!I䮢]O{H$IRϻ9s֧ a=`- aB\X0"+5"C1Hb?߮3x3&gşggl_hZ^,`5?ߎvĸ%̀M!OZC2#0x LJ0 Gw$I$I}<{Eb+y;iI,`ܚF:5ܛA8-O-|8K7s|#Z8a&><a&/VtbtLʌI$I$I$I$I$I$IRjDD%tEXtdate:create2022-05-31T04:40:26+00:00!Î%tEXtdate:modify2022-05-31T04:40:26+00:00|{2IENDB`Mini Shell

HOME


Mini Shell 1.0
DIR:/home/drishtigems.com/www/vendor/markbaker/complex/classes/src/
Upload File :
Current File : /home/drishtigems.com/www/vendor/markbaker/complex/classes/src/Functions.php
<?php

namespace Complex;

use InvalidArgumentException;

class Functions
{
    /**
     * Returns the absolute value (modulus) of a complex number.
     * Also known as the rho of the complex number, i.e. the distance/radius
     *   from the centrepoint to the representation of the number in polar coordinates.
     *
     * This function is a synonym for rho()
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    float            The absolute (or rho) value of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     *
     * @see    rho
     *
     */
    public static function abs($complex): float
    {
        return self::rho($complex);
    }

    /**
     * Returns the inverse cosine of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse cosine of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function acos($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        $square = clone $complex;
        $square = Operations::multiply($square, $complex);
        $invsqrt = new Complex(1.0);
        $invsqrt = Operations::subtract($invsqrt, $square);
        $invsqrt = self::sqrt($invsqrt);
        $adjust = new Complex(
            $complex->getReal() - $invsqrt->getImaginary(),
            $complex->getImaginary() + $invsqrt->getReal()
        );
        $log = self::ln($adjust);

        return new Complex(
            $log->getImaginary(),
            -1 * $log->getReal()
        );
    }

    /**
     * Returns the inverse hyperbolic cosine of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse hyperbolic cosine of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function acosh($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->isReal() && ($complex->getReal() > 1)) {
            return new Complex(\acosh($complex->getReal()));
        }

        $acosh = self::acos($complex)
            ->reverse();
        if ($acosh->getReal() < 0.0) {
            $acosh = $acosh->invertReal();
        }

        return $acosh;
    }

    /**
     * Returns the inverse cotangent of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse cotangent of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function acot($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        return self::atan(self::inverse($complex));
    }

    /**
     * Returns the inverse hyperbolic cotangent of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse hyperbolic cotangent of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function acoth($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        return self::atanh(self::inverse($complex));
    }

    /**
     * Returns the inverse cosecant of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse cosecant of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function acsc($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
            return new Complex(INF);
        }

        return self::asin(self::inverse($complex));
    }

    /**
     * Returns the inverse hyperbolic cosecant of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse hyperbolic cosecant of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function acsch($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
            return new Complex(INF);
        }

        return self::asinh(self::inverse($complex));
    }

    /**
     * Returns the argument of a complex number.
     * Also known as the theta of the complex number, i.e. the angle in radians
     *   from the real axis to the representation of the number in polar coordinates.
     *
     * This function is a synonym for theta()
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    float            The argument (or theta) value of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     *
     * @see    theta
     */
    public static function argument($complex): float
    {
        return self::theta($complex);
    }

    /**
     * Returns the inverse secant of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse secant of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function asec($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
            return new Complex(INF);
        }

        return self::acos(self::inverse($complex));
    }

    /**
     * Returns the inverse hyperbolic secant of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse hyperbolic secant of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function asech($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
            return new Complex(INF);
        }

        return self::acosh(self::inverse($complex));
    }

    /**
     * Returns the inverse sine of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse sine of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function asin($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        $square = Operations::multiply($complex, $complex);
        $invsqrt = new Complex(1.0);
        $invsqrt = Operations::subtract($invsqrt, $square);
        $invsqrt = self::sqrt($invsqrt);
        $adjust = new Complex(
            $invsqrt->getReal() - $complex->getImaginary(),
            $invsqrt->getImaginary() + $complex->getReal()
        );
        $log = self::ln($adjust);

        return new Complex(
            $log->getImaginary(),
            -1 * $log->getReal()
        );
    }

    /**
     * Returns the inverse hyperbolic sine of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse hyperbolic sine of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function asinh($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->isReal() && ($complex->getReal() > 1)) {
            return new Complex(\asinh($complex->getReal()));
        }

        $asinh = clone $complex;
        $asinh = $asinh->reverse()
            ->invertReal();
        $asinh = self::asin($asinh);

        return $asinh->reverse()
            ->invertImaginary();
    }

    /**
     * Returns the inverse tangent of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse tangent of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function atan($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->isReal()) {
            return new Complex(\atan($complex->getReal()));
        }

        $t1Value = new Complex(-1 * $complex->getImaginary(), $complex->getReal());
        $uValue = new Complex(1, 0);

        $d1Value = clone $uValue;
        $d1Value = Operations::subtract($d1Value, $t1Value);
        $d2Value = Operations::add($t1Value, $uValue);
        $uResult = $d1Value->divideBy($d2Value);
        $uResult = self::ln($uResult);

        return new Complex(
            (($uResult->getImaginary() == M_PI) ? -M_PI : $uResult->getImaginary()) * -0.5,
            $uResult->getReal() * 0.5,
            $complex->getSuffix()
        );
    }

    /**
     * Returns the inverse hyperbolic tangent of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse hyperbolic tangent of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function atanh($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->isReal()) {
            $real = $complex->getReal();
            if ($real >= -1.0 && $real <= 1.0) {
                return new Complex(\atanh($real));
            } else {
                return new Complex(\atanh(1 / $real), (($real < 0.0) ? M_PI_2 : -1 * M_PI_2));
            }
        }

        $iComplex = clone $complex;
        $iComplex = $iComplex->invertImaginary()
            ->reverse();
        return self::atan($iComplex)
            ->invertReal()
            ->reverse();
    }

    /**
     * Returns the complex conjugate of a complex number
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The conjugate of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function conjugate($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        return new Complex(
            $complex->getReal(),
            -1 * $complex->getImaginary(),
            $complex->getSuffix()
        );
    }

    /**
     * Returns the cosine of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The cosine of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function cos($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->isReal()) {
            return new Complex(\cos($complex->getReal()));
        }

        return self::conjugate(
            new Complex(
                \cos($complex->getReal()) * \cosh($complex->getImaginary()),
                \sin($complex->getReal()) * \sinh($complex->getImaginary()),
                $complex->getSuffix()
            )
        );
    }

    /**
     * Returns the hyperbolic cosine of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The hyperbolic cosine of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function cosh($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->isReal()) {
            return new Complex(\cosh($complex->getReal()));
        }

        return new Complex(
            \cosh($complex->getReal()) * \cos($complex->getImaginary()),
            \sinh($complex->getReal()) * \sin($complex->getImaginary()),
            $complex->getSuffix()
        );
    }

    /**
     * Returns the cotangent of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The cotangent of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function cot($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
            return new Complex(INF);
        }

        return self::inverse(self::tan($complex));
    }

    /**
     * Returns the hyperbolic cotangent of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The hyperbolic cotangent of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function coth($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        return self::inverse(self::tanh($complex));
    }

    /**
     * Returns the cosecant of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The cosecant of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function csc($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
            return new Complex(INF);
        }

        return self::inverse(self::sin($complex));
    }

    /**
     * Returns the hyperbolic cosecant of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The hyperbolic cosecant of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function csch($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
            return new Complex(INF);
        }

        return self::inverse(self::sinh($complex));
    }

    /**
     * Returns the exponential of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The exponential of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function exp($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if (($complex->getReal() == 0.0) && (\abs($complex->getImaginary()) == M_PI)) {
            return new Complex(-1.0, 0.0);
        }

        $rho = \exp($complex->getReal());

        return new Complex(
            $rho * \cos($complex->getImaginary()),
            $rho * \sin($complex->getImaginary()),
            $complex->getSuffix()
        );
    }

    /**
     * Returns the inverse of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The inverse of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    InvalidArgumentException    If function would result in a division by zero
     */
    public static function inverse($complex): Complex
    {
        $complex = clone Complex::validateComplexArgument($complex);

        if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
            throw new InvalidArgumentException('Division by zero');
        }

        return $complex->divideInto(1.0);
    }

    /**
     * Returns the natural logarithm of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The natural logarithm of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    InvalidArgumentException  If the real and the imaginary parts are both zero
     */
    public static function ln($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if (($complex->getReal() == 0.0) && ($complex->getImaginary() == 0.0)) {
            throw new InvalidArgumentException();
        }

        return new Complex(
            \log(self::rho($complex)),
            self::theta($complex),
            $complex->getSuffix()
        );
    }

    /**
     * Returns the base-2 logarithm of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The base-2 logarithm of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    InvalidArgumentException  If the real and the imaginary parts are both zero
     */
    public static function log2($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if (($complex->getReal() == 0.0) && ($complex->getImaginary() == 0.0)) {
            throw new InvalidArgumentException();
        } elseif (($complex->getReal() > 0.0) && ($complex->getImaginary() == 0.0)) {
            return new Complex(\log($complex->getReal(), 2), 0.0, $complex->getSuffix());
        }

        return self::ln($complex)
            ->multiply(\log(Complex::EULER, 2));
    }

    /**
     * Returns the common logarithm (base 10) of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The common logarithm (base 10) of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    InvalidArgumentException  If the real and the imaginary parts are both zero
     */
    public static function log10($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if (($complex->getReal() == 0.0) && ($complex->getImaginary() == 0.0)) {
            throw new InvalidArgumentException();
        } elseif (($complex->getReal() > 0.0) && ($complex->getImaginary() == 0.0)) {
            return new Complex(\log10($complex->getReal()), 0.0, $complex->getSuffix());
        }

        return self::ln($complex)
            ->multiply(\log10(Complex::EULER));
    }

    /**
     * Returns the negative of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The negative value of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     *
     * @see    rho
     *
     */
    public static function negative($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        return new Complex(
            -1 * $complex->getReal(),
            -1 * $complex->getImaginary(),
            $complex->getSuffix()
        );
    }

    /**
     * Returns a complex number raised to a power.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @param     float|integer    $power      The power to raise this value to
     * @return    Complex          The complex argument raised to the real power.
     * @throws    Exception        If the power argument isn't a valid real
     */
    public static function pow($complex, $power): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if (!is_numeric($power)) {
            throw new Exception('Power argument must be a real number');
        }

        if ($complex->getImaginary() == 0.0 && $complex->getReal() >= 0.0) {
            return new Complex(\pow($complex->getReal(), $power));
        }

        $rValue = \sqrt(($complex->getReal() * $complex->getReal()) + ($complex->getImaginary() * $complex->getImaginary()));
        $rPower = \pow($rValue, $power);
        $theta = $complex->argument() * $power;
        if ($theta == 0) {
            return new Complex(1);
        }

        return new Complex($rPower * \cos($theta), $rPower * \sin($theta), $complex->getSuffix());
    }

    /**
     * Returns the rho of a complex number.
     * This is the distance/radius from the centrepoint to the representation of the number in polar coordinates.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    float            The rho value of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function rho($complex): float
    {
        $complex = Complex::validateComplexArgument($complex);

        return \sqrt(
            ($complex->getReal() * $complex->getReal()) +
            ($complex->getImaginary() * $complex->getImaginary())
        );
    }

    /**
     * Returns the secant of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The secant of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function sec($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        return self::inverse(self::cos($complex));
    }

    /**
     * Returns the hyperbolic secant of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The hyperbolic secant of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function sech($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        return self::inverse(self::cosh($complex));
    }

    /**
     * Returns the sine of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The sine of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function sin($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->isReal()) {
            return new Complex(\sin($complex->getReal()));
        }

        return new Complex(
            \sin($complex->getReal()) * \cosh($complex->getImaginary()),
            \cos($complex->getReal()) * \sinh($complex->getImaginary()),
            $complex->getSuffix()
        );
    }

    /**
     * Returns the hyperbolic sine of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The hyperbolic sine of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function sinh($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->isReal()) {
            return new Complex(\sinh($complex->getReal()));
        }

        return new Complex(
            \sinh($complex->getReal()) * \cos($complex->getImaginary()),
            \cosh($complex->getReal()) * \sin($complex->getImaginary()),
            $complex->getSuffix()
        );
    }

    /**
     * Returns the square root of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The Square root of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function sqrt($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        $theta = self::theta($complex);
        $delta1 = \cos($theta / 2);
        $delta2 = \sin($theta / 2);
        $rho = \sqrt(self::rho($complex));

        return new Complex($delta1 * $rho, $delta2 * $rho, $complex->getSuffix());
    }

    /**
     * Returns the tangent of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The tangent of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    InvalidArgumentException    If function would result in a division by zero
     */
    public static function tan($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->isReal()) {
            return new Complex(\tan($complex->getReal()));
        }

        $real = $complex->getReal();
        $imaginary = $complex->getImaginary();
        $divisor = 1 + \pow(\tan($real), 2) * \pow(\tanh($imaginary), 2);
        if ($divisor == 0.0) {
            throw new InvalidArgumentException('Division by zero');
        }

        return new Complex(
            \pow(self::sech($imaginary)->getReal(), 2) * \tan($real) / $divisor,
            \pow(self::sec($real)->getReal(), 2) * \tanh($imaginary) / $divisor,
            $complex->getSuffix()
        );
    }

    /**
     * Returns the hyperbolic tangent of a complex number.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    Complex          The hyperbolic tangent of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     * @throws    \InvalidArgumentException    If function would result in a division by zero
     */
    public static function tanh($complex): Complex
    {
        $complex = Complex::validateComplexArgument($complex);
        $real = $complex->getReal();
        $imaginary = $complex->getImaginary();
        $divisor = \cos($imaginary) * \cos($imaginary) + \sinh($real) * \sinh($real);
        if ($divisor == 0.0) {
            throw new InvalidArgumentException('Division by zero');
        }

        return new Complex(
            \sinh($real) * \cosh($real) / $divisor,
            0.5 * \sin(2 * $imaginary) / $divisor,
            $complex->getSuffix()
        );
    }

    /**
     * Returns the theta of a complex number.
     *   This is the angle in radians from the real axis to the representation of the number in polar coordinates.
     *
     * @param     Complex|mixed    $complex    Complex number or a numeric value.
     * @return    float            The theta value of the complex argument.
     * @throws    Exception        If argument isn't a valid real or complex number.
     */
    public static function theta($complex): float
    {
        $complex = Complex::validateComplexArgument($complex);

        if ($complex->getReal() == 0.0) {
            if ($complex->isReal()) {
                return 0.0;
            } elseif ($complex->getImaginary() < 0.0) {
                return M_PI / -2;
            }
            return M_PI / 2;
        } elseif ($complex->getReal() > 0.0) {
            return \atan($complex->getImaginary() / $complex->getReal());
        } elseif ($complex->getImaginary() < 0.0) {
            return -(M_PI - \atan(\abs($complex->getImaginary()) / \abs($complex->getReal())));
        }

        return M_PI - \atan($complex->getImaginary() / \abs($complex->getReal()));
    }
}