PNG  IHDRQgAMA a cHRMz&u0`:pQ<bKGDgmIDATxwUﹻ& ^CX(J I@ "% (** BX +*i"]j(IH{~R)[~>h{}gy)I$Ij .I$I$ʊy@}x.: $I$Ii}VZPC)I$IF ^0ʐJ$I$Q^}{"r=OzI$gRZeC.IOvH eKX $IMpxsk.쒷/&r[޳<v| .I~)@$updYRa$I |M.e JaֶpSYR6j>h%IRز if&uJ)M$I vLi=H;7UJ,],X$I1AҒJ$ XY XzI@GNҥRT)E@;]K*Mw;#5_wOn~\ DC&$(A5 RRFkvIR}l!RytRl;~^ǷJj اy뷦BZJr&ӥ8Pjw~vnv X^(I;4R=P[3]J,]ȏ~:3?[ a&e)`e*P[4]T=Cq6R[ ~ޤrXR Հg(t_HZ-Hg M$ãmL5R uk*`%C-E6/%[t X.{8P9Z.vkXŐKjgKZHg(aK9ڦmKjѺm_ \#$5,)-  61eJ,5m| r'= &ڡd%-]J on Xm|{ RҞe $eڧY XYrԮ-a7RK6h>n$5AVڴi*ֆK)mѦtmr1p| q:흺,)Oi*ֺK)ܬ֦K-5r3>0ԔHjJئEZj,%re~/z%jVMڸmrt)3]J,T K֦OvԒgii*bKiNO~%PW0=dii2tJ9Jݕ{7"I P9JKTbu,%r"6RKU}Ij2HKZXJ,妝 XYrP ެ24c%i^IK|.H,%rb:XRl1X4Pe/`x&P8Pj28Mzsx2r\zRPz4J}yP[g=L) .Q[6RjWgp FIH*-`IMRaK9TXcq*I y[jE>cw%gLRԕiFCj-ďa`#e~I j,%r,)?[gp FI˨mnWX#>mʔ XA DZf9,nKҲzIZXJ,L#kiPz4JZF,I,`61%2s $,VOϚ2/UFJfy7K> X+6 STXIeJILzMfKm LRaK9%|4p9LwJI!`NsiazĔ)%- XMq>pk$-$Q2x#N ؎-QR}ᶦHZډ)J,l#i@yn3LN`;nڔ XuX5pF)m|^0(>BHF9(cզEerJI rg7 4I@z0\JIi䵙RR0s;$s6eJ,`n 䂦0a)S)A 1eJ,堌#635RIgpNHuTH_SԕqVe ` &S)>p;S$魁eKIuX`I4춒o}`m$1":PI<[v9^\pTJjriRŭ P{#{R2,`)e-`mgj~1ϣLKam7&U\j/3mJ,`F;M'䱀 .KR#)yhTq;pcK9(q!w?uRR,n.yw*UXj#\]ɱ(qv2=RqfB#iJmmL<]Y͙#$5 uTU7ӦXR+q,`I}qL'`6Kͷ6r,]0S$- [RKR3oiRE|nӦXR.(i:LDLTJjY%o:)6rxzҒqTJjh㞦I.$YR.ʼnGZ\ֿf:%55 I˼!6dKxm4E"mG_ s? .e*?LRfK9%q#uh$)i3ULRfK9yxm܌bj84$i1U^@Wbm4uJ,ҪA>_Ij?1v32[gLRD96oTaR׿N7%L2 NT,`)7&ƝL*꽙yp_$M2#AS,`)7$rkTA29_Iye"|/0t)$n XT2`YJ;6Jx".e<`$) PI$5V4]29SRI>~=@j]lp2`K9Jaai^" Ԋ29ORI%:XV5]JmN9]H;1UC39NI%Xe78t)a;Oi Ҙ>Xt"~G>_mn:%|~ޅ_+]$o)@ǀ{hgN;IK6G&rp)T2i୦KJuv*T=TOSV>(~D>dm,I*Ɛ:R#ۙNI%D>G.n$o;+#RR!.eU˽TRI28t)1LWϚ>IJa3oFbu&:tJ*(F7y0ZR ^p'Ii L24x| XRI%ۄ>S1]Jy[zL$adB7.eh4%%누>WETf+3IR:I3Xה)3אOۦSRO'ٺ)S}"qOr[B7ϙ.edG)^ETR"RtRݜh0}LFVӦDB^k_JDj\=LS(Iv─aTeZ%eUAM-0;~˃@i|l @S4y72>sX-vA}ϛBI!ݎߨWl*)3{'Y|iSlEڻ(5KtSI$Uv02,~ԩ~x;P4ցCrO%tyn425:KMlD ^4JRxSهF_}شJTS6uj+ﷸk$eZO%G*^V2u3EMj3k%)okI]dT)URKDS 7~m@TJR~荪fT"֛L \sM -0T KfJz+nإKr L&j()[E&I ߴ>e FW_kJR|!O:5/2跌3T-'|zX ryp0JS ~^F>-2< `*%ZFP)bSn"L :)+pʷf(pO3TMW$~>@~ū:TAIsV1}S2<%ޟM?@iT ,Eūoz%i~g|`wS(]oȤ8)$ ntu`өe`6yPl IzMI{ʣzʨ )IZ2= ld:5+請M$-ї;U>_gsY$ÁN5WzWfIZ)-yuXIfp~S*IZdt;t>KūKR|$#LcԀ+2\;kJ`]YǔM1B)UbG"IRߊ<xܾӔJ0Z='Y嵤 Leveg)$znV-º^3Ւof#0Tfk^Zs[*I꯳3{)ˬW4Ւ4 OdpbZRS|*I 55#"&-IvT&/윚Ye:i$ 9{LkuRe[I~_\ؠ%>GL$iY8 9ܕ"S`kS.IlC;Ҏ4x&>u_0JLr<J2(^$5L s=MgV ~,Iju> 7r2)^=G$1:3G< `J3~&IR% 6Tx/rIj3O< ʔ&#f_yXJiގNSz; Tx(i8%#4 ~AS+IjerIUrIj362v885+IjAhK__5X%nV%Iͳ-y|7XV2v4fzo_68"S/I-qbf; LkF)KSM$ Ms>K WNV}^`-큧32ŒVؙGdu,^^m%6~Nn&͓3ŒVZMsRpfEW%IwdǀLm[7W&bIRL@Q|)* i ImsIMmKmyV`i$G+R 0tV'!V)֏28vU7͒vHꦼtxꗞT ;S}7Mf+fIRHNZUkUx5SAJㄌ9MqμAIRi|j5)o*^'<$TwI1hEU^c_j?Е$%d`z cyf,XO IJnTgA UXRD }{H}^S,P5V2\Xx`pZ|Yk:$e ~ @nWL.j+ϝYb퇪bZ BVu)u/IJ_ 1[p.p60bC >|X91P:N\!5qUB}5a5ja `ubcVxYt1N0Zzl4]7­gKj]?4ϻ *[bg$)+À*x쳀ogO$~,5 زUS9 lq3+5mgw@np1sso Ӻ=|N6 /g(Wv7U;zωM=wk,0uTg_`_P`uz?2yI!b`kĸSo+Qx%!\οe|އԁKS-s6pu_(ֿ$i++T8=eY; צP+phxWQv*|p1. ά. XRkIQYP,drZ | B%wP|S5`~́@i޾ E;Չaw{o'Q?%iL{u D?N1BD!owPHReFZ* k_-~{E9b-~P`fE{AܶBJAFO wx6Rox5 K5=WwehS8 (JClJ~ p+Fi;ŗo+:bD#g(C"wA^ r.F8L;dzdIHUX݆ϞXg )IFqem%I4dj&ppT{'{HOx( Rk6^C٫O.)3:s(۳(Z?~ٻ89zmT"PLtw䥈5&b<8GZ-Y&K?e8,`I6e(֍xb83 `rzXj)F=l($Ij 2*(F?h(/9ik:I`m#p3MgLaKjc/U#n5S# m(^)=y=đx8ŬI[U]~SцA4p$-F i(R,7Cx;X=cI>{Km\ o(Tv2vx2qiiDJN,Ҏ!1f 5quBj1!8 rDFd(!WQl,gSkL1Bxg''՞^ǘ;pQ P(c_ IRujg(Wz bs#P­rz> k c&nB=q+ؔXn#r5)co*Ũ+G?7< |PQӣ'G`uOd>%Mctz# Ԫڞ&7CaQ~N'-P.W`Oedp03C!IZcIAMPUۀ5J<\u~+{9(FbbyAeBhOSܳ1 bÈT#ŠyDžs,`5}DC-`̞%r&ڙa87QWWp6e7 Rϫ/oY ꇅ Nܶըtc!LA T7V4Jsū I-0Pxz7QNF_iZgúWkG83 0eWr9 X]㾮݁#Jˢ C}0=3ݱtBi]_ &{{[/o[~ \q鯜00٩|cD3=4B_b RYb$óBRsf&lLX#M*C_L܄:gx)WΘsGSbuL rF$9';\4Ɍq'n[%p.Q`u hNb`eCQyQ|l_C>Lb꟟3hSb #xNxSs^ 88|Mz)}:](vbۢamŖ࿥ 0)Q7@0=?^k(*J}3ibkFn HjB׻NO z x}7p 0tfDX.lwgȔhԾŲ }6g E |LkLZteu+=q\Iv0쮑)QٵpH8/2?Σo>Jvppho~f>%bMM}\//":PTc(v9v!gոQ )UfVG+! 35{=x\2+ki,y$~A1iC6#)vC5^>+gǵ@1Hy٪7u;p psϰu/S <aʸGu'tD1ԝI<pg|6j'p:tպhX{o(7v],*}6a_ wXRk,O]Lܳ~Vo45rp"N5k;m{rZbΦ${#)`(Ŵg,;j%6j.pyYT?}-kBDc3qA`NWQū20/^AZW%NQ MI.X#P#,^Ebc&?XR tAV|Y.1!؅⨉ccww>ivl(JT~ u`ٵDm q)+Ri x/x8cyFO!/*!/&,7<.N,YDŽ&ܑQF1Bz)FPʛ?5d 6`kQձ λc؎%582Y&nD_$Je4>a?! ͨ|ȎWZSsv8 j(I&yj Jb5m?HWp=g}G3#|I,5v珿] H~R3@B[☉9Ox~oMy=J;xUVoj bUsl_35t-(ՃɼRB7U!qc+x4H_Qo֮$[GO<4`&č\GOc[.[*Af%mG/ ňM/r W/Nw~B1U3J?P&Y )`ѓZ1p]^l“W#)lWZilUQu`-m|xĐ,_ƪ|9i:_{*(3Gѧ}UoD+>m_?VPۅ15&}2|/pIOʵ> GZ9cmíتmnz)yߐbD >e}:) r|@R5qVSA10C%E_'^8cR7O;6[eKePGϦX7jb}OTGO^jn*媓7nGMC t,k31Rb (vyܴʭ!iTh8~ZYZp(qsRL ?b}cŨʊGO^!rPJO15MJ[c&~Z`"ѓޔH1C&^|Ш|rʼ,AwĴ?b5)tLU)F| &g٣O]oqSUjy(x<Ϳ3 .FSkoYg2 \_#wj{u'rQ>o;%n|F*O_L"e9umDds?.fuuQbIWz |4\0 sb;OvxOSs; G%T4gFRurj(֍ڑb uԖKDu1MK{1^ q; C=6\8FR艇!%\YÔU| 88m)֓NcLve C6z;o&X x59:q61Z(T7>C?gcļxѐ Z oo-08jہ x,`' ҔOcRlf~`jj".Nv+sM_]Zk g( UOPyεx%pUh2(@il0ݽQXxppx-NS( WO+轾 nFߢ3M<;z)FBZjciu/QoF 7R¥ ZFLF~#ȣߨ^<쩡ݛкvџ))ME>ώx4m#!-m!L;vv#~Y[đKmx9.[,UFS CVkZ +ߟrY٧IZd/ioi$%͝ب_ֶX3ܫhNU ZZgk=]=bbJS[wjU()*I =ώ:}-蹞lUj:1}MWm=̛ _ ¾,8{__m{_PVK^n3esw5ӫh#$-q=A̟> ,^I}P^J$qY~Q[ Xq9{#&T.^GVj__RKpn,b=`żY@^՝;z{paVKkQXj/)y TIc&F;FBG7wg ZZDG!x r_tƢ!}i/V=M/#nB8 XxЫ ^@CR<{䤭YCN)eKOSƟa $&g[i3.C6xrOc8TI;o hH6P&L{@q6[ Gzp^71j(l`J}]e6X☉#͕ ׈$AB1Vjh㭦IRsqFBjwQ_7Xk>y"N=MB0 ,C #o6MRc0|$)ف"1!ixY<B9mx `,tA>)5ػQ?jQ?cn>YZe Tisvh# GMމȇp:ԴVuږ8ɼH]C.5C!UV;F`mbBk LTMvPʍϤj?ԯ/Qr1NB`9s"s TYsz &9S%U԰> {<ؿSMxB|H\3@!U| k']$U+> |HHMLޢ?V9iD!-@x TIî%6Z*9X@HMW#?nN ,oe6?tQwڱ.]-y':mW0#!J82qFjH -`ѓ&M0u Uγmxϵ^-_\])@0Rt.8/?ٰCY]x}=sD3ojަЫNuS%U}ԤwHH>ڗjܷ_3gN q7[q2la*ArǓԖ+p8/RGM ]jacd(JhWko6ڎbj]i5Bj3+3!\j1UZLsLTv8HHmup<>gKMJj0@H%,W΃7R) ">c, xixј^ aܖ>H[i.UIHc U1=yW\=S*GR~)AF=`&2h`DzT󑓶J+?W+}C%P:|0H܆}-<;OC[~o.$~i}~HQ TvXΈr=b}$vizL4:ȰT|4~*!oXQR6Lk+#t/g lԁߖ[Jڶ_N$k*". xsxX7jRVbAAʯKҎU3)zSNN _'s?f)6X!%ssAkʱ>qƷb hg %n ~p1REGMHH=BJiy[<5 ǁJҖgKR*倳e~HUy)Ag,K)`Vw6bRR:qL#\rclK/$sh*$ 6덤 KԖc 3Z9=Ɣ=o>X Ώ"1 )a`SJJ6k(<c e{%kϊP+SL'TcMJWRm ŏ"w)qc ef꒵i?b7b('"2r%~HUS1\<(`1Wx9=8HY9m:X18bgD1u ~|H;K-Uep,, C1 RV.MR5άh,tWO8WC$ XRVsQS]3GJ|12 [vM :k#~tH30Rf-HYݺ-`I9%lIDTm\ S{]9gOڒMNCV\G*2JRŨ;Rҏ^ڽ̱mq1Eu?To3I)y^#jJw^Ńj^vvlB_⋌P4x>0$c>K†Aļ9s_VjTt0l#m>E-,,x,-W)سo&96RE XR.6bXw+)GAEvL)͞K4$p=Ũi_ѱOjb HY/+@θH9޼]Nԥ%n{ &zjT? Ty) s^ULlb,PiTf^<À] 62R^V7)S!nllS6~͝V}-=%* ʻ>G DnK<y&>LPy7'r=Hj 9V`[c"*^8HpcO8bnU`4JȪAƋ#1_\ XϘHPRgik(~G~0DAA_2p|J묭a2\NCr]M_0 ^T%e#vD^%xy-n}-E\3aS%yN!r_{ )sAw ڼp1pEAk~v<:`'ӭ^5 ArXOI驻T (dk)_\ PuA*BY]yB"l\ey hH*tbK)3 IKZ򹞋XjN n *n>k]X_d!ryBH ]*R 0(#'7 %es9??ښFC,ՁQPjARJ\Ρw K#jahgw;2$l*) %Xq5!U᢯6Re] |0[__64ch&_}iL8KEgҎ7 M/\`|.p,~`a=BR?xܐrQ8K XR2M8f ?`sgWS%" Ԉ 7R%$ N}?QL1|-эټwIZ%pvL3Hk>,ImgW7{E xPHx73RA @RS CC !\ȟ5IXR^ZxHл$Q[ŝ40 (>+ _C >BRt<,TrT {O/H+˟Pl6 I B)/VC<6a2~(XwV4gnXR ϱ5ǀHٻ?tw똤Eyxp{#WK qG%5],(0ӈH HZ])ג=K1j&G(FbM@)%I` XRg ʔ KZG(vP,<`[ Kn^ SJRsAʠ5xՅF`0&RbV tx:EaUE/{fi2;.IAwW8/tTxAGOoN?G}l L(n`Zv?pB8K_gI+ܗ #i?ޙ.) p$utc ~DžfՈEo3l/)I-U?aԅ^jxArA ΧX}DmZ@QLےbTXGd.^|xKHR{|ΕW_h] IJ`[G9{).y) 0X YA1]qp?p_k+J*Y@HI>^?gt.06Rn ,` ?);p pSF9ZXLBJPWjgQ|&)7! HjQt<| ؅W5 x W HIzYoVMGP Hjn`+\(dNW)F+IrS[|/a`K|ͻ0Hj{R,Q=\ (F}\WR)AgSG`IsnAR=|8$}G(vC$)s FBJ?]_u XRvύ6z ŨG[36-T9HzpW̞ú Xg큽=7CufzI$)ki^qk-) 0H*N` QZkk]/tnnsI^Gu't=7$ Z;{8^jB% IItRQS7[ϭ3 $_OQJ`7!]W"W,)Iy W AJA;KWG`IY{8k$I$^%9.^(`N|LJ%@$I}ֽp=FB*xN=gI?Q{٥4B)mw $Igc~dZ@G9K X?7)aK%݅K$IZ-`IpC U6$I\0>!9k} Xa IIS0H$I H ?1R.Чj:4~Rw@p$IrA*u}WjWFPJ$I➓/6#! LӾ+ X36x8J |+L;v$Io4301R20M I$-E}@,pS^ޟR[/s¹'0H$IKyfŸfVOπFT*a$I>He~VY/3R/)>d$I>28`Cjw,n@FU*9ttf$I~<;=/4RD~@ X-ѕzἱI$: ԍR a@b X{+Qxuq$IЛzo /~3\8ڒ4BN7$IҀj V]n18H$IYFBj3̵̚ja pp $Is/3R Ӻ-Yj+L;.0ŔI$Av? #!5"aʄj}UKmɽH$IjCYs?h$IDl843.v}m7UiI=&=0Lg0$I4: embe` eQbm0u? $IT!Sƍ'-sv)s#C0:XB2a w I$zbww{."pPzO =Ɔ\[ o($Iaw]`E).Kvi:L*#gР7[$IyGPI=@R 4yR~̮´cg I$I/<tPͽ hDgo 94Z^k盇΄8I56^W$I^0̜N?4*H`237}g+hxoq)SJ@p|` $I%>-hO0eO>\ԣNߌZD6R=K ~n($I$y3D>o4b#px2$yڪtzW~a $I~?x'BwwpH$IZݑnC㧄Pc_9sO gwJ=l1:mKB>Ab<4Lp$Ib o1ZQ@85b̍ S'F,Fe,^I$IjEdù{l4 8Ys_s Z8.x m"+{~?q,Z D!I$ϻ'|XhB)=…']M>5 rgotԎ 獽PH$IjIPhh)n#cÔqA'ug5qwU&rF|1E%I$%]!'3AFD/;Ck_`9 v!ٴtPV;x`'*bQa w I$Ix5 FC3D_~A_#O݆DvV?<qw+I$I{=Z8".#RIYyjǪ=fDl9%M,a8$I$Ywi[7ݍFe$s1ՋBVA?`]#!oz4zjLJo8$I$%@3jAa4(o ;p,,dya=F9ً[LSPH$IJYЉ+3> 5"39aZ<ñh!{TpBGkj}Sp $IlvF.F$I z< '\K*qq.f<2Y!S"-\I$IYwčjF$ w9 \ߪB.1v!Ʊ?+r:^!I$BϹB H"B;L'G[ 4U#5>੐)|#o0aڱ$I>}k&1`U#V?YsV x>{t1[I~D&(I$I/{H0fw"q"y%4 IXyE~M3 8XψL}qE$I[> nD?~sf ]o΁ cT6"?'_Ἣ $I>~.f|'!N?⟩0G KkXZE]ޡ;/&?k OۘH$IRۀwXӨ<7@PnS04aӶp.:@\IWQJ6sS%I$e5ڑv`3:x';wq_vpgHyXZ 3gЂ7{{EuԹn±}$I$8t;b|591nءQ"P6O5i }iR̈́%Q̄p!I䮢]O{H$IRϻ9s֧ a=`- aB\X0"+5"C1Hb?߮3x3&gşggl_hZ^,`5?ߎvĸ%̀M!OZC2#0x LJ0 Gw$I$I}<{Eb+y;iI,`ܚF:5ܛA8-O-|8K7s|#Z8a&><a&/VtbtLʌI$I$I$I$I$I$IRjDD%tEXtdate:create2022-05-31T04:40:26+00:00!Î%tEXtdate:modify2022-05-31T04:40:26+00:00|{2IENDB`Mini Shell

HOME


Mini Shell 1.0
DIR:/home/htlwork.com/www/dev/sarvhitkari-parkashan/sarvparklive/node_modules/fraction.js/
Upload File :
Current File : /home/htlwork.com/www/dev/sarvhitkari-parkashan/sarvparklive/node_modules/fraction.js/fraction.js
/**
 * @license Fraction.js v4.3.7 31/08/2023
 * https://www.xarg.org/2014/03/rational-numbers-in-javascript/
 *
 * Copyright (c) 2023, Robert Eisele (robert@raw.org)
 * Dual licensed under the MIT or GPL Version 2 licenses.
 **/


/**
 *
 * This class offers the possibility to calculate fractions.
 * You can pass a fraction in different formats. Either as array, as double, as string or as an integer.
 *
 * Array/Object form
 * [ 0 => <numerator>, 1 => <denominator> ]
 * [ n => <numerator>, d => <denominator> ]
 *
 * Integer form
 * - Single integer value
 *
 * Double form
 * - Single double value
 *
 * String form
 * 123.456 - a simple double
 * 123/456 - a string fraction
 * 123.'456' - a double with repeating decimal places
 * 123.(456) - synonym
 * 123.45'6' - a double with repeating last place
 * 123.45(6) - synonym
 *
 * Example:
 *
 * var f = new Fraction("9.4'31'");
 * f.mul([-4, 3]).div(4.9);
 *
 */


// Maximum search depth for cyclic rational numbers. 2000 should be more than enough.
// Example: 1/7 = 0.(142857) has 6 repeating decimal places.
// If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits
var MAX_CYCLE_LEN = 2000;

// Parsed data to avoid calling "new" all the time
var P = {
  "s": 1,
  "n": 0,
  "d": 1
};

function assign(n, s) {

  if (isNaN(n = parseInt(n, 10))) {
    throw InvalidParameter();
  }
  return n * s;
}

// Creates a new Fraction internally without the need of the bulky constructor
function newFraction(n, d) {

  if (d === 0) {
    throw DivisionByZero();
  }

  var f = Object.create(Fraction.prototype);
  f["s"] = n < 0 ? -1 : 1;

  n = n < 0 ? -n : n;

  var a = gcd(n, d);

  f["n"] = n / a;
  f["d"] = d / a;
  return f;
}

function factorize(num) {

  var factors = {};

  var n = num;
  var i = 2;
  var s = 4;

  while (s <= n) {

    while (n % i === 0) {
      n/= i;
      factors[i] = (factors[i] || 0) + 1;
    }
    s+= 1 + 2 * i++;
  }

  if (n !== num) {
    if (n > 1)
      factors[n] = (factors[n] || 0) + 1;
  } else {
    factors[num] = (factors[num] || 0) + 1;
  }
  return factors;
}

var parse = function(p1, p2) {

  var n = 0, d = 1, s = 1;
  var v = 0, w = 0, x = 0, y = 1, z = 1;

  var A = 0, B = 1;
  var C = 1, D = 1;

  var N = 10000000;
  var M;

  if (p1 === undefined || p1 === null) {
    /* void */
  } else if (p2 !== undefined) {
    n = p1;
    d = p2;
    s = n * d;

    if (n % 1 !== 0 || d % 1 !== 0) {
      throw NonIntegerParameter();
    }

  } else
    switch (typeof p1) {

      case "object":
        {
          if ("d" in p1 && "n" in p1) {
            n = p1["n"];
            d = p1["d"];
            if ("s" in p1)
              n*= p1["s"];
          } else if (0 in p1) {
            n = p1[0];
            if (1 in p1)
              d = p1[1];
          } else {
            throw InvalidParameter();
          }
          s = n * d;
          break;
        }
      case "number":
        {
          if (p1 < 0) {
            s = p1;
            p1 = -p1;
          }

          if (p1 % 1 === 0) {
            n = p1;
          } else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow

            if (p1 >= 1) {
              z = Math.pow(10, Math.floor(1 + Math.log(p1) / Math.LN10));
              p1/= z;
            }

            // Using Farey Sequences
            // http://www.johndcook.com/blog/2010/10/20/best-rational-approximation/

            while (B <= N && D <= N) {
              M = (A + C) / (B + D);

              if (p1 === M) {
                if (B + D <= N) {
                  n = A + C;
                  d = B + D;
                } else if (D > B) {
                  n = C;
                  d = D;
                } else {
                  n = A;
                  d = B;
                }
                break;

              } else {

                if (p1 > M) {
                  A+= C;
                  B+= D;
                } else {
                  C+= A;
                  D+= B;
                }

                if (B > N) {
                  n = C;
                  d = D;
                } else {
                  n = A;
                  d = B;
                }
              }
            }
            n*= z;
          } else if (isNaN(p1) || isNaN(p2)) {
            d = n = NaN;
          }
          break;
        }
      case "string":
        {
          B = p1.match(/\d+|./g);

          if (B === null)
            throw InvalidParameter();

          if (B[A] === '-') {// Check for minus sign at the beginning
            s = -1;
            A++;
          } else if (B[A] === '+') {// Check for plus sign at the beginning
            A++;
          }

          if (B.length === A + 1) { // Check if it's just a simple number "1234"
            w = assign(B[A++], s);
          } else if (B[A + 1] === '.' || B[A] === '.') { // Check if it's a decimal number

            if (B[A] !== '.') { // Handle 0.5 and .5
              v = assign(B[A++], s);
            }
            A++;

            // Check for decimal places
            if (A + 1 === B.length || B[A + 1] === '(' && B[A + 3] === ')' || B[A + 1] === "'" && B[A + 3] === "'") {
              w = assign(B[A], s);
              y = Math.pow(10, B[A].length);
              A++;
            }

            // Check for repeating places
            if (B[A] === '(' && B[A + 2] === ')' || B[A] === "'" && B[A + 2] === "'") {
              x = assign(B[A + 1], s);
              z = Math.pow(10, B[A + 1].length) - 1;
              A+= 3;
            }

          } else if (B[A + 1] === '/' || B[A + 1] === ':') { // Check for a simple fraction "123/456" or "123:456"
            w = assign(B[A], s);
            y = assign(B[A + 2], 1);
            A+= 3;
          } else if (B[A + 3] === '/' && B[A + 1] === ' ') { // Check for a complex fraction "123 1/2"
            v = assign(B[A], s);
            w = assign(B[A + 2], s);
            y = assign(B[A + 4], 1);
            A+= 5;
          }

          if (B.length <= A) { // Check for more tokens on the stack
            d = y * z;
            s = /* void */
            n = x + d * v + z * w;
            break;
          }

          /* Fall through on error */
        }
      default:
        throw InvalidParameter();
    }

  if (d === 0) {
    throw DivisionByZero();
  }

  P["s"] = s < 0 ? -1 : 1;
  P["n"] = Math.abs(n);
  P["d"] = Math.abs(d);
};

function modpow(b, e, m) {

  var r = 1;
  for (; e > 0; b = (b * b) % m, e >>= 1) {

    if (e & 1) {
      r = (r * b) % m;
    }
  }
  return r;
}


function cycleLen(n, d) {

  for (; d % 2 === 0;
    d/= 2) {
  }

  for (; d % 5 === 0;
    d/= 5) {
  }

  if (d === 1) // Catch non-cyclic numbers
    return 0;

  // If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem:
  // 10^(d-1) % d == 1
  // However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone,
  // as we want to translate the numbers to strings.

  var rem = 10 % d;
  var t = 1;

  for (; rem !== 1; t++) {
    rem = rem * 10 % d;

    if (t > MAX_CYCLE_LEN)
      return 0; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1`
  }
  return t;
}


function cycleStart(n, d, len) {

  var rem1 = 1;
  var rem2 = modpow(10, len, d);

  for (var t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE)
    // Solve 10^s == 10^(s+t) (mod d)

    if (rem1 === rem2)
      return t;

    rem1 = rem1 * 10 % d;
    rem2 = rem2 * 10 % d;
  }
  return 0;
}

function gcd(a, b) {

  if (!a)
    return b;
  if (!b)
    return a;

  while (1) {
    a%= b;
    if (!a)
      return b;
    b%= a;
    if (!b)
      return a;
  }
};

/**
 * Module constructor
 *
 * @constructor
 * @param {number|Fraction=} a
 * @param {number=} b
 */
export default function Fraction(a, b) {

  parse(a, b);

  if (this instanceof Fraction) {
    a = gcd(P["d"], P["n"]); // Abuse variable a
    this["s"] = P["s"];
    this["n"] = P["n"] / a;
    this["d"] = P["d"] / a;
  } else {
    return newFraction(P['s'] * P['n'], P['d']);
  }
}

var DivisionByZero = function() { return new Error("Division by Zero"); };
var InvalidParameter = function() { return new Error("Invalid argument"); };
var NonIntegerParameter = function() { return new Error("Parameters must be integer"); };

Fraction.prototype = {

  "s": 1,
  "n": 0,
  "d": 1,

  /**
   * Calculates the absolute value
   *
   * Ex: new Fraction(-4).abs() => 4
   **/
  "abs": function() {

    return newFraction(this["n"], this["d"]);
  },

  /**
   * Inverts the sign of the current fraction
   *
   * Ex: new Fraction(-4).neg() => 4
   **/
  "neg": function() {

    return newFraction(-this["s"] * this["n"], this["d"]);
  },

  /**
   * Adds two rational numbers
   *
   * Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30
   **/
  "add": function(a, b) {

    parse(a, b);
    return newFraction(
      this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"],
      this["d"] * P["d"]
    );
  },

  /**
   * Subtracts two rational numbers
   *
   * Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30
   **/
  "sub": function(a, b) {

    parse(a, b);
    return newFraction(
      this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"],
      this["d"] * P["d"]
    );
  },

  /**
   * Multiplies two rational numbers
   *
   * Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111
   **/
  "mul": function(a, b) {

    parse(a, b);
    return newFraction(
      this["s"] * P["s"] * this["n"] * P["n"],
      this["d"] * P["d"]
    );
  },

  /**
   * Divides two rational numbers
   *
   * Ex: new Fraction("-17.(345)").inverse().div(3)
   **/
  "div": function(a, b) {

    parse(a, b);
    return newFraction(
      this["s"] * P["s"] * this["n"] * P["d"],
      this["d"] * P["n"]
    );
  },

  /**
   * Clones the actual object
   *
   * Ex: new Fraction("-17.(345)").clone()
   **/
  "clone": function() {
    return newFraction(this['s'] * this['n'], this['d']);
  },

  /**
   * Calculates the modulo of two rational numbers - a more precise fmod
   *
   * Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6)
   **/
  "mod": function(a, b) {

    if (isNaN(this['n']) || isNaN(this['d'])) {
      return new Fraction(NaN);
    }

    if (a === undefined) {
      return newFraction(this["s"] * this["n"] % this["d"], 1);
    }

    parse(a, b);
    if (0 === P["n"] && 0 === this["d"]) {
      throw DivisionByZero();
    }

    /*
     * First silly attempt, kinda slow
     *
     return that["sub"]({
     "n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)),
     "d": num["d"],
     "s": this["s"]
     });*/

    /*
     * New attempt: a1 / b1 = a2 / b2 * q + r
     * => b2 * a1 = a2 * b1 * q + b1 * b2 * r
     * => (b2 * a1 % a2 * b1) / (b1 * b2)
     */
    return newFraction(
      this["s"] * (P["d"] * this["n"]) % (P["n"] * this["d"]),
      P["d"] * this["d"]
    );
  },

  /**
   * Calculates the fractional gcd of two rational numbers
   *
   * Ex: new Fraction(5,8).gcd(3,7) => 1/56
   */
  "gcd": function(a, b) {

    parse(a, b);

    // gcd(a / b, c / d) = gcd(a, c) / lcm(b, d)

    return newFraction(gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]), P["d"] * this["d"]);
  },

  /**
   * Calculates the fractional lcm of two rational numbers
   *
   * Ex: new Fraction(5,8).lcm(3,7) => 15
   */
  "lcm": function(a, b) {

    parse(a, b);

    // lcm(a / b, c / d) = lcm(a, c) / gcd(b, d)

    if (P["n"] === 0 && this["n"] === 0) {
      return newFraction(0, 1);
    }
    return newFraction(P["n"] * this["n"], gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]));
  },

  /**
   * Calculates the ceil of a rational number
   *
   * Ex: new Fraction('4.(3)').ceil() => (5 / 1)
   **/
  "ceil": function(places) {

    places = Math.pow(10, places || 0);

    if (isNaN(this["n"]) || isNaN(this["d"])) {
      return new Fraction(NaN);
    }
    return newFraction(Math.ceil(places * this["s"] * this["n"] / this["d"]), places);
  },

  /**
   * Calculates the floor of a rational number
   *
   * Ex: new Fraction('4.(3)').floor() => (4 / 1)
   **/
  "floor": function(places) {

    places = Math.pow(10, places || 0);

    if (isNaN(this["n"]) || isNaN(this["d"])) {
      return new Fraction(NaN);
    }
    return newFraction(Math.floor(places * this["s"] * this["n"] / this["d"]), places);
  },

  /**
   * Rounds a rational number
   *
   * Ex: new Fraction('4.(3)').round() => (4 / 1)
   **/
  "round": function(places) {

    places = Math.pow(10, places || 0);

    if (isNaN(this["n"]) || isNaN(this["d"])) {
      return new Fraction(NaN);
    }
    return newFraction(Math.round(places * this["s"] * this["n"] / this["d"]), places);
  },

  /**
   * Rounds a rational number to a multiple of another rational number
   *
   * Ex: new Fraction('0.9').roundTo("1/8") => 7 / 8
   **/
  "roundTo": function(a, b) {

    /*
    k * x/y ≤ a/b < (k+1) * x/y
    ⇔ k ≤ a/b / (x/y) < (k+1)
    ⇔ k = floor(a/b * y/x)
    */

    parse(a, b);

    return newFraction(this['s'] * Math.round(this['n'] * P['d'] / (this['d'] * P['n'])) * P['n'], P['d']);
  },

  /**
   * Gets the inverse of the fraction, means numerator and denominator are exchanged
   *
   * Ex: new Fraction([-3, 4]).inverse() => -4 / 3
   **/
  "inverse": function() {

    return newFraction(this["s"] * this["d"], this["n"]);
  },

  /**
   * Calculates the fraction to some rational exponent, if possible
   *
   * Ex: new Fraction(-1,2).pow(-3) => -8
   */
  "pow": function(a, b) {

    parse(a, b);

    // Trivial case when exp is an integer

    if (P['d'] === 1) {

      if (P['s'] < 0) {
        return newFraction(Math.pow(this['s'] * this["d"], P['n']), Math.pow(this["n"], P['n']));
      } else {
        return newFraction(Math.pow(this['s'] * this["n"], P['n']), Math.pow(this["d"], P['n']));
      }
    }

    // Negative roots become complex
    //     (-a/b)^(c/d) = x
    // <=> (-1)^(c/d) * (a/b)^(c/d) = x
    // <=> (cos(pi) + i*sin(pi))^(c/d) * (a/b)^(c/d) = x         # rotate 1 by 180°
    // <=> (cos(c*pi/d) + i*sin(c*pi/d)) * (a/b)^(c/d) = x       # DeMoivre's formula in Q ( https://proofwiki.org/wiki/De_Moivre%27s_Formula/Rational_Index )
    // From which follows that only for c=0 the root is non-complex. c/d is a reduced fraction, so that sin(c/dpi)=0 occurs for d=1, which is handled by our trivial case.
    if (this['s'] < 0) return null;

    // Now prime factor n and d
    var N = factorize(this['n']);
    var D = factorize(this['d']);

    // Exponentiate and take root for n and d individually
    var n = 1;
    var d = 1;
    for (var k in N) {
      if (k === '1') continue;
      if (k === '0') {
        n = 0;
        break;
      }
      N[k]*= P['n'];

      if (N[k] % P['d'] === 0) {
        N[k]/= P['d'];
      } else return null;
      n*= Math.pow(k, N[k]);
    }

    for (var k in D) {
      if (k === '1') continue;
      D[k]*= P['n'];

      if (D[k] % P['d'] === 0) {
        D[k]/= P['d'];
      } else return null;
      d*= Math.pow(k, D[k]);
    }

    if (P['s'] < 0) {
      return newFraction(d, n);
    }
    return newFraction(n, d);
  },

  /**
   * Check if two rational numbers are the same
   *
   * Ex: new Fraction(19.6).equals([98, 5]);
   **/
  "equals": function(a, b) {

    parse(a, b);
    return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0
  },

  /**
   * Check if two rational numbers are the same
   *
   * Ex: new Fraction(19.6).equals([98, 5]);
   **/
  "compare": function(a, b) {

    parse(a, b);
    var t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]);
    return (0 < t) - (t < 0);
  },

  "simplify": function(eps) {

    if (isNaN(this['n']) || isNaN(this['d'])) {
      return this;
    }

    eps = eps || 0.001;

    var thisABS = this['abs']();
    var cont = thisABS['toContinued']();

    for (var i = 1; i < cont.length; i++) {

      var s = newFraction(cont[i - 1], 1);
      for (var k = i - 2; k >= 0; k--) {
        s = s['inverse']()['add'](cont[k]);
      }

      if (Math.abs(s['sub'](thisABS).valueOf()) < eps) {
        return s['mul'](this['s']);
      }
    }
    return this;
  },

  /**
   * Check if two rational numbers are divisible
   *
   * Ex: new Fraction(19.6).divisible(1.5);
   */
  "divisible": function(a, b) {

    parse(a, b);
    return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"])));
  },

  /**
   * Returns a decimal representation of the fraction
   *
   * Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183
   **/
  'valueOf': function() {

    return this["s"] * this["n"] / this["d"];
  },

  /**
   * Returns a string-fraction representation of a Fraction object
   *
   * Ex: new Fraction("1.'3'").toFraction(true) => "4 1/3"
   **/
  'toFraction': function(excludeWhole) {

    var whole, str = "";
    var n = this["n"];
    var d = this["d"];
    if (this["s"] < 0) {
      str+= '-';
    }

    if (d === 1) {
      str+= n;
    } else {

      if (excludeWhole && (whole = Math.floor(n / d)) > 0) {
        str+= whole;
        str+= " ";
        n%= d;
      }

      str+= n;
      str+= '/';
      str+= d;
    }
    return str;
  },

  /**
   * Returns a latex representation of a Fraction object
   *
   * Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}"
   **/
  'toLatex': function(excludeWhole) {

    var whole, str = "";
    var n = this["n"];
    var d = this["d"];
    if (this["s"] < 0) {
      str+= '-';
    }

    if (d === 1) {
      str+= n;
    } else {

      if (excludeWhole && (whole = Math.floor(n / d)) > 0) {
        str+= whole;
        n%= d;
      }

      str+= "\\frac{";
      str+= n;
      str+= '}{';
      str+= d;
      str+= '}';
    }
    return str;
  },

  /**
   * Returns an array of continued fraction elements
   *
   * Ex: new Fraction("7/8").toContinued() => [0,1,7]
   */
  'toContinued': function() {

    var t;
    var a = this['n'];
    var b = this['d'];
    var res = [];

    if (isNaN(a) || isNaN(b)) {
      return res;
    }

    do {
      res.push(Math.floor(a / b));
      t = a % b;
      a = b;
      b = t;
    } while (a !== 1);

    return res;
  },

  /**
   * Creates a string representation of a fraction with all digits
   *
   * Ex: new Fraction("100.'91823'").toString() => "100.(91823)"
   **/
  'toString': function(dec) {

    var N = this["n"];
    var D = this["d"];

    if (isNaN(N) || isNaN(D)) {
      return "NaN";
    }

    dec = dec || 15; // 15 = decimal places when no repetation

    var cycLen = cycleLen(N, D); // Cycle length
    var cycOff = cycleStart(N, D, cycLen); // Cycle start

    var str = this['s'] < 0 ? "-" : "";

    str+= N / D | 0;

    N%= D;
    N*= 10;

    if (N)
      str+= ".";

    if (cycLen) {

      for (var i = cycOff; i--;) {
        str+= N / D | 0;
        N%= D;
        N*= 10;
      }
      str+= "(";
      for (var i = cycLen; i--;) {
        str+= N / D | 0;
        N%= D;
        N*= 10;
      }
      str+= ")";
    } else {
      for (var i = dec; N && i--;) {
        str+= N / D | 0;
        N%= D;
        N*= 10;
      }
    }
    return str;
  }
};