Modelling and Optimizing Little Millet Yield through Interval Regression Analysis
Author: Jyotiranjan Behera1and Mamata Kuila1*
Department of Mathematics,
Odisha University of Agriculture and Technology, Bhubaneswar -751003 (Odisha), India.(Corresponding author: Mamata Kuila*)
Journal Name:
DOI:
Download PDF
Abstract
With the increase of people around the world, there is a shortage of land for agriculture. Increasing population on less land has increasingly become the subject of research. In this study our purpose is to identify the amount of fertilizers that should be applied to maximum production. Here we have utilized a quadratic programming approach to generate a yield response surface from the data provided from Little Milet Plantation. The response surface is a nonlinear interval valued function. Using interval valued response surface we have found the amount of fertilizers required for maximizing of yield.
Keywords
Interval regression, Optimum yield, Unconstrained Optimization, Nitrogen, Potassium.
Mathematics Subject Classification: 90C20, 90C30, 62J02,65G40
Conclusion
-
References
Abera, T., Debele, T., and Wgery, D. (2017). Effects of
Varieties and Nitrogen Fertilizer on Yield and Yield
components of Maize on Farmers Field in Mid
Altitude Areas of Western Ethiopia. International
journal of Agronomy, 3, 1-13.
Behera, J., and Mahanti, M. K. (2022). Recommendation of
Nitrogen and Sulfur for optimum Yield in the
intermediate Stage of Cultivation using a
mathematical model. Biological Forum-An
International Journal, 14(2), 1086-1090.
Behera, J., and Mahanti, M. K. (2022). Application of
Remedial Fertilizers for Optimum Yield of Garlic
Using a Mathematical Model. International journal
of plant and soil Science, 34(7), 73-82.
Behera, J., and Mahanti, M. K. (2021). The use of
Mathematical Model to predict levels of N and K
for optimum yield., International journal of plant
and soil Science, 33(23), 2320-7035.
Bhurjee, A. K., and Panda, G. (2012). Efficient solution of
interval optimization problem. Mathematical
Methods of Operation Research,76(3), 273-288.
Bhurjee, A. K., and Panda, G. (2016). Sufficient optimality
conditions and duality theory for interval
optimization problem. Anal Operation Research,
243(1), 335-348.
Charate, S., Thimmegowda, M., Rao, G. E.,
Ramachandrappa, and B. K., Sathish, A. (2018).
Effect of Nitrogen and Potassium levels on growth
and yield of little Millet under dryland Alfisols of
southern Karnataka. Int. J. Pure APP. Biosci., 6(6),
918-923.
Dash, J., and Kuila, M., (2022). Achievement of Target
Yield by Using Required Quantitative fertilizers in
Rice crop cultivation by using Optimum solutions.
Asian Journal of Soil Science and Plant Nutrition,
8(2), 44-50.
Dash, J., and Kuila, M. (2022). Study of Integrated Crop-
targeted Production Efficient Fertilizer Uptake
Response. International Journal of Plant and Soil
Science, 34(24), 574-580.
Dash, J., and Kuila, M. (2023). Comparative Study of
Mathematical Model Applications on the amount of
N-P-K Fertilizer Absorbed to meet the Best Yield
Data of Peddy (Rice) cultivation. International
Journal of Plant and Soil Science, 35(7),70-77.
Gomez, K. A., and Gomez, A. (1984). Statistical Procedure
for agricultural research. Second edition. John Willy
and Sons, New York, 68(23), 721-734.
Hariyadi, B. W., Nizak, F., Nurmalasari, I. R., and Kogoya,
Y. (2021). Effect of Dose and time of NPK fertilizer
Application on the growth and Yield of Tomato
Plants (Lycopersicum esculentum Mill). Journal of
Agricultural Science and Agriculture Engineering,
2(2), 101-111.
Hladik, M. (2011). Optimal value bounds in nonlinear
programming with interval data. Top, 19(1), 93-106.
Hladık, M. (2012). Interval linear programming: A
survey. Linear programming-new frontiers in
theory and applications, 85-120.
Jiang, C., Han, X., and Liu, G. R. (2008). A nonlinear
interval number programming method for uncertain
optimization problems. 30(5), 235-243.
Jiang, C., Zhang, Z., Zhang, Q., Han, X., Xie, H., and Liu,
J. (2014) . A new nonlinear interval programming
method for uncertain problems with dependent
interval variables. Eur J Oper Res, 238(1), 245-253.
Jiang, J., Ren, M., and Wang, J. (2022). Interval number
multi-attribute decision- making method based on
TOPSIS. Alexandria Engineering Journal, 61(7),
5059-5064.
Jayswal, A., Stancu-Minasian, I., & Ahmad, I. (2011). On
sufficiency and duality for a class of interval-valued
programming problems. Applied Mathematics and
Computation, 218(8), 4119-4127.
Kolbe, H., Zhang, W., and Balluer, L. (1990). Simulation
of fertilizer influence on yield and quality of potato
(Solanum tuberosum) Tubers by nonlinear
optimization method. Plant and Soil, 124(2), 309-
313.
Kumar, P., and Panda, G. (2017). Solving nonlinear
interval optimization problem using stochastic
programming technique. Opsearch, 78(5), 453-462.
Lad, N. G., Patange, M. J., Dhage, S. J. (2014). Effect of
Nitrogen and Phosphorus levels on growth, yield
attributing characters, yield of economics of French
bean. Int. J. Curr. Microbial. App. Sci., 3(12), 822-
827.
Li, C. J., Luo, G., Abdulwahab, S. S., Bin, Li., Shengrui,
Z., and Junming, S. (2022). Optimal Fertilization
level for yield, Biological and Quality traits of
Soybean under Drip irrigation System in the Arid
Region of Northwest China. Agronomy, 12, 291.
Liao, H., Wang, J., Tang, M., & Al-Barakati, A. (2023). An
overview of interval analysis techniques and their
fuzzy extensions in multi-criteria decision-making:
what’s going on and what’s next?. International
Journal of Fuzzy Systems, 25(5), 2081-2108.
Li, W., and Tian, X. (2008). Numerical solution method for
general interval quadratic programming. Appl Math
Comput,202(2), 589-595.
Maurya, J. K., Singh, J. P., Tomar, S., & Kumar, R. (2017).
Optimization of NPK fertilizers for higher yield and
quality of strawberry (Fragaria x ananassa Duch.)
fruits. Int. J. Curr. Microbiol. App. Sci, 6(9), 1534-
1538.
Nigatie, T. Z. (2021). Review on effect of N a d P fertilizer
rates on yield and yield components of common
bean (Phaseolus vulgaris varieties. International
journal of Research in Agronomy, 4(1), 32-40.
Paiman, P. A. (2021). Maximizing the rice yield (Oryza
sativa L.) using NPK fertilizer. The Open
Agriculture Journal, 2021, Volume 15, 33-38.
Rao, S. S. (2019). Engineering optimization: theory and
practice. John Wiley & Sons.
Reddy, A. A. (2013). Agricultural Productivity Growth in
Orissa, India: crop Diversification to pulses,
oilseeds and other high value crops. African Journal
of Agricultural Research, 8(19), 125-129.
Roy, P., & Panda, G. (2021). Existence of solution of
constrained interval optimization problems with
regularity concept. RAIRO-Operations
Research, 55, S1997-S2011.
Behera and Kuila Biological Forum – An International Journal 15(4): 1065-1070(2023) 1070
Shaocheng, T. (1994). Interval number and fuzzy number
linear programming. Fuzzy sets Cyst, 66(3), 301-
306.
Shapiro, A., Dentcheva, D., & Ruszczynski, A.
(2021). Lectures on stochastic programming:
modeling and theory. Society for Industrial and
Applied Mathematics.
Tanaka, H., & Lee, H. (2002). Interval regression analysis
by quadratic programming approach. IEEE
Transactions on Fuzzy Systems, 6(4), 473-481.
Verdooren, R. (2023). Design and analysis of fertilizer
experiments in: oil palm management for large and
sustainable yields. Potash and phosphate. Institute
of Canada/International Potash Institute,
Singapore, 27 (5), 259-278.
Wu, H. C. (2008). On interval-valued nonlinear
programming problems. J Math Anal Appl 338(1),
299-316.
Wu, H. C. (2009). Duality theory for optimization problems
with interval-valued objective functions. J Optim
Theory Appl., 144 (3), 615-628.
How to cite this article
Jyotiranjan Behera and Mamata Kuila (2023). Modelling and Optimizing Little Millet Yield through Interval Regression Analysis. Biological Forum – An International Journal, 15(4): 1065-1070.